Soumen commited on
Commit
7e1ea57
·
1 Parent(s): fe287cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -13
app.py CHANGED
@@ -52,9 +52,7 @@ import line_cor
52
  import altair as alt
53
  #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
54
  from PIL import Image
55
- #@st.experimental_singleton
56
- #@st.cache_resource(experimental_allow_widgets=True)
57
- @st.cache_data
58
  def read_pdf(file):
59
  # images=pdf2image.convert_from_path(file)
60
  # # print(type(images))
@@ -88,9 +86,8 @@ def read_pdf(file):
88
  # all_page_text += text + " " #page.extractText()
89
  # return all_page_text
90
  st.title("NLP APPLICATION")
91
- #@st.experimental_singleton
92
  #@st.cache_resource(experimental_allow_widgets=True)
93
- @st.cache_data
94
  def text_analyzer(my_text):
95
  nlp = spacy.load('en_core_web_sm')
96
  docx = nlp(my_text)
@@ -104,9 +101,8 @@ def load_models():
104
  model = GPT2LMHeadModel.from_pretrained('gpt2-large')
105
  return tokenizer, model
106
  # Function For Extracting Entities
107
- #@st.experimental_singleton
108
  #@st.cache_resource(experimental_allow_widgets=True)
109
- @st.chache_data
110
  def entity_analyzer(my_text):
111
  nlp = spacy.load('en_core_web_sm')
112
  docx = nlp(my_text)
@@ -172,20 +168,16 @@ def main():
172
  #img = cv2.imread("scholarly_text.jpg")
173
  text = message
174
  if st.checkbox("Show Named Entities English/Bangla"):
175
- st.cache_data.clear()
176
  entity_result = entity_analyzer(text)
177
  st.json(entity_result)
178
 
179
  if st.checkbox("Show Sentiment Analysis for English"):
180
- st.cache_data.clear()
181
  blob = TextBlob(text)
182
  result_sentiment = blob.sentiment
183
  st.success(result_sentiment)
184
  if st.checkbox("Spell Corrections for English"):
185
- st.cache_data.clear()
186
  st.success(TextBlob(text).correct())
187
  if st.checkbox("Text Generation"):
188
- st.cache_data.clear()
189
  tokenizer, model = load_models()
190
  input_ids = tokenizer(text, return_tensors='pt').input_ids
191
  st.text("Using Hugging Face Transformer, Contrastive Search ..")
@@ -200,7 +192,6 @@ def main():
200
  # st.success(summary_result)
201
  if st.checkbox("Mark to English Text Summarization!"):
202
  #st.title("Summarize Your Text for English only!")
203
- st.cache_data.clear()
204
  tokenizer = AutoTokenizer.from_pretrained('t5-base')
205
  model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
206
  #st.text("Using Google T5 Transformer ..")
@@ -212,7 +203,6 @@ def main():
212
  summary = tokenizer.decode(summary_ids[0])
213
  st.success(summary)
214
  if st.button("refresh"):
215
- st.cache_data.clear()
216
  st.experimental_rerun()
217
  if __name__ == '__main__':
218
  main()
 
52
  import altair as alt
53
  #pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
54
  from PIL import Image
55
+ @st.experimental_singleton
 
 
56
  def read_pdf(file):
57
  # images=pdf2image.convert_from_path(file)
58
  # # print(type(images))
 
86
  # all_page_text += text + " " #page.extractText()
87
  # return all_page_text
88
  st.title("NLP APPLICATION")
89
+ @st.experimental_singleton
90
  #@st.cache_resource(experimental_allow_widgets=True)
 
91
  def text_analyzer(my_text):
92
  nlp = spacy.load('en_core_web_sm')
93
  docx = nlp(my_text)
 
101
  model = GPT2LMHeadModel.from_pretrained('gpt2-large')
102
  return tokenizer, model
103
  # Function For Extracting Entities
104
+ @st.experimental_singleton
105
  #@st.cache_resource(experimental_allow_widgets=True)
 
106
  def entity_analyzer(my_text):
107
  nlp = spacy.load('en_core_web_sm')
108
  docx = nlp(my_text)
 
168
  #img = cv2.imread("scholarly_text.jpg")
169
  text = message
170
  if st.checkbox("Show Named Entities English/Bangla"):
 
171
  entity_result = entity_analyzer(text)
172
  st.json(entity_result)
173
 
174
  if st.checkbox("Show Sentiment Analysis for English"):
 
175
  blob = TextBlob(text)
176
  result_sentiment = blob.sentiment
177
  st.success(result_sentiment)
178
  if st.checkbox("Spell Corrections for English"):
 
179
  st.success(TextBlob(text).correct())
180
  if st.checkbox("Text Generation"):
 
181
  tokenizer, model = load_models()
182
  input_ids = tokenizer(text, return_tensors='pt').input_ids
183
  st.text("Using Hugging Face Transformer, Contrastive Search ..")
 
192
  # st.success(summary_result)
193
  if st.checkbox("Mark to English Text Summarization!"):
194
  #st.title("Summarize Your Text for English only!")
 
195
  tokenizer = AutoTokenizer.from_pretrained('t5-base')
196
  model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
197
  #st.text("Using Google T5 Transformer ..")
 
203
  summary = tokenizer.decode(summary_ids[0])
204
  st.success(summary)
205
  if st.button("refresh"):
 
206
  st.experimental_rerun()
207
  if __name__ == '__main__':
208
  main()