Update app.py
Browse files
app.py
CHANGED
|
@@ -26,12 +26,6 @@ import os
|
|
| 26 |
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
|
| 27 |
#os.system('pip install -q pytesseract')
|
| 28 |
import streamlit as st
|
| 29 |
-
import websockets
|
| 30 |
-
import pyaudio
|
| 31 |
-
from configure import api_key
|
| 32 |
-
import json
|
| 33 |
-
import asyncio
|
| 34 |
-
|
| 35 |
import torch
|
| 36 |
from transformers import AutoTokenizer, AutoModelWithLMHead, GPT2LMHeadModel
|
| 37 |
|
|
@@ -76,80 +70,7 @@ def main():
|
|
| 76 |
This is a Natural Language Processing(NLP) Based App useful for basic NLP task
|
| 77 |
NER,Sentiment, Spell Corrections and Summarization
|
| 78 |
""")
|
| 79 |
-
|
| 80 |
-
st.session_state["text"] = ""
|
| 81 |
-
st.session_state["run"] = False
|
| 82 |
-
def start_listening():
|
| 83 |
-
st.session_state["run"] = True
|
| 84 |
-
st.button("Say something", on_click=start_listening)
|
| 85 |
-
text = st.text_input("What should I create?", value=st.session_state["text"])
|
| 86 |
-
URL = "wss://api.assemblyai.com/v2/realtime/ws?sample_rate=16000"
|
| 87 |
-
FRAMES_PER_BUFFER = 3200
|
| 88 |
-
FORMAT = pyaudio.paInt16
|
| 89 |
-
CHANNELS = 1
|
| 90 |
-
RATE = 16000
|
| 91 |
-
p = pyaudio.PyAudio()
|
| 92 |
-
# starts recording
|
| 93 |
-
stream = p.open(
|
| 94 |
-
format=FORMAT,
|
| 95 |
-
channels=CHANNELS,
|
| 96 |
-
rate=RATE,
|
| 97 |
-
input=True,
|
| 98 |
-
frames_per_buffer=FRAMES_PER_BUFFER
|
| 99 |
-
)
|
| 100 |
-
async def send_receive():
|
| 101 |
-
print(f'Connecting websocket to url ${URL}')
|
| 102 |
-
async with websockets.connect(
|
| 103 |
-
URL,
|
| 104 |
-
extra_headers=(("Authorization", api_key),),
|
| 105 |
-
ping_interval=5,
|
| 106 |
-
ping_timeout=20
|
| 107 |
-
) as _ws:
|
| 108 |
-
|
| 109 |
-
r = await asyncio.sleep(0.1)
|
| 110 |
-
print("Receiving Session begins ...")
|
| 111 |
-
|
| 112 |
-
session_begins = await _ws.recv()
|
| 113 |
-
|
| 114 |
-
async def send():
|
| 115 |
-
while st.session_state['run']:
|
| 116 |
-
try:
|
| 117 |
-
data = stream.read(FRAMES_PER_BUFFER)
|
| 118 |
-
data = base64.b64encode(data).decode("utf-8")
|
| 119 |
-
json_data = json.dumps({"audio_data":str(data)})
|
| 120 |
-
r = await _ws.send(json_data)
|
| 121 |
-
except websockets.exceptions.ConnectionClosedError as e:
|
| 122 |
-
print(e)
|
| 123 |
-
assert e.code == 4008
|
| 124 |
-
break
|
| 125 |
-
except Exception as e:
|
| 126 |
-
print(e)
|
| 127 |
-
assert False, "Not a websocket 4008 error"
|
| 128 |
-
|
| 129 |
-
r = await asyncio.sleep(0.01)
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
async def receive():
|
| 133 |
-
while st.session_state['run']:
|
| 134 |
-
try:
|
| 135 |
-
result_str = await _ws.recv()
|
| 136 |
-
result = json.loads(result_str)['text']
|
| 137 |
-
|
| 138 |
-
if json.loads(result_str)['message_type'] == 'FinalTranscript':
|
| 139 |
-
result = result.replace('.', '')
|
| 140 |
-
result = result.replace('!', '')
|
| 141 |
-
st.session_state['text'] = result
|
| 142 |
-
st.session_state['run'] = False
|
| 143 |
-
st.experimental_rerun()
|
| 144 |
-
except websockets.exceptions.ConnectionClosedError as e:
|
| 145 |
-
print(e)
|
| 146 |
-
assert e.code == 4008
|
| 147 |
-
break
|
| 148 |
-
except Exception as e:
|
| 149 |
-
print(e)
|
| 150 |
-
assert False, "Not a websocket 4008 error"
|
| 151 |
-
|
| 152 |
-
send_result, receive_result = await asyncio.gather(send(), receive())
|
| 153 |
# Entity Extraction
|
| 154 |
if st.checkbox("Show Named Entities"):
|
| 155 |
st.subheader("Analyze Your Text")
|
|
|
|
| 26 |
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
|
| 27 |
#os.system('pip install -q pytesseract')
|
| 28 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
import torch
|
| 30 |
from transformers import AutoTokenizer, AutoModelWithLMHead, GPT2LMHeadModel
|
| 31 |
|
|
|
|
| 70 |
This is a Natural Language Processing(NLP) Based App useful for basic NLP task
|
| 71 |
NER,Sentiment, Spell Corrections and Summarization
|
| 72 |
""")
|
| 73 |
+
text = st.text_input("Type your text!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
# Entity Extraction
|
| 75 |
if st.checkbox("Show Named Entities"):
|
| 76 |
st.subheader("Analyze Your Text")
|