File size: 5,893 Bytes
9c37e72 dba2773 9c37e72 dba2773 9c37e72 6e58c44 bd18577 c75cc74 9c37e72 36603f5 9c37e72 9531d63 9c37e72 419e04c 9c37e72 54ee49c f6a6e42 9c37e72 9531d63 9c37e72 f6a6e42 9c37e72 34f51a1 9c37e72 bb357c0 9c37e72 cb52c89 9531d63 9c37e72 c75cc74 9c37e72 6647ca5 9c37e72 c75cc74 9c37e72 9531d63 6647ca5 9531d63 c75cc74 6647ca5 9531d63 0cb4c76 c75cc74 0cb4c76 adb2b76 9c37e72 9222805 9c37e72 991d44a 9c37e72 c42698d 9c37e72 dba2773 c95ac40 9c37e72 c95ac40 9c37e72 c95ac40 1272866 fd37fd8 c95ac40 9c37e72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
"""
#App: NLP App with Streamlit
Credits: Streamlit Team, Marc Skov Madsen(For Awesome-streamlit gallery)
Description
This is a Natural Language Processing(NLP) Based App useful for basic NLP concepts such as follows;
+ Tokenization & Lemmatization using Spacy
+ Named Entity Recognition(NER) using SpaCy
+ Sentiment Analysis using TextBlob
+ Document/Text Summarization using Gensim/T5 for both Bangla and english
This is built with Streamlit Framework, an awesome framework for building ML and NLP tools.
Purpose
To perform basic and useful NLP task with Streamlit, Spacy, Textblob and Gensim
"""
# Core Pkgs
import os
#os.system('sudo apt-get install tesseract-ocr-eng')
#os.system('sudo apt-get install tesseract-ocr-ben')
#os.system('wget https://github.com/tesseract-ocr/tessdata/raw/main/ben.traineddata')
#os.system('gunzip ben.traineddata.gz ')
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
#os.system('pip install -q pytesseract')
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelWithLMHead, GPT2LMHeadModel
# NLP Pkgs
from textblob import TextBlob
import spacy
from gensim.summarization import summarize
import requests
import cv2
import numpy as np
import pytesseract
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
from PIL import Image
# Title
st.title("Streamlit NLP APP")
@st.experimental_singleton
def text_analyzer(my_text):
nlp = spacy.load('en_core_web_sm')
docx = nlp(my_text)
# tokens = [ token.text for token in docx]
allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
return allData
@st.experimental_singleton
def load_models():
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
return tokenizer, model
# Function For Extracting Entities
@st.experimental_singleton
def entity_analyzer(my_text):
nlp = spacy.load('en_core_web_sm')
docx = nlp(my_text)
tokens = [ token.text for token in docx]
entities = [(entity.text,entity.label_)for entity in docx.ents]
allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
return allData
def main():
""" NLP Based App with Streamlit """
st.markdown("""
#### Description
This is a Natural Language Processing(NLP) Based App useful for basic NLP task
NER,Sentiment, Spell Corrections and Summarization
""")
# Entity Extraction
text = st.text_input("Type your text!")
if st.checkbox("Show Named Entities"):
st.subheader("Analyze Your Text")
if st.button("Extract"):
entity_result = entity_analyzer(text)
st.json(entity_result)
# Sentiment Analysis
if st.checkbox("Show Sentiment Analysis"):
st.subheader("Analyse Your Text")
if st.button("Analyze"):
blob = TextBlob(text)
result_sentiment = blob.sentiment
st.success(result_sentiment)
#Text Corrections
if st.checkbox("Spell Corrections"):
st.subheader("Correct Your Text")
if st.button("Spell Corrections"):
st.text("Using TextBlob ..")
st.success(TextBlob(text).correct())
if st.checkbox("Text Generation"):
st.subheader("Generate Text")
ok = st.button("Generate")
tokenizer, model = load_models()
if ok:
input_ids = tokenizer(text, return_tensors='pt').input_ids
st.text("Using Hugging Face Transformer, Contrastive Search ..")
output = model.generate(input_ids, max_length=128)
st.success(tokenizer.decode(output[0], skip_special_tokens=True))
def change_photo_state():
st.session_state["photo"]="done"
st.subheader("Summary section, feed your image!")
camera_photo = st.camera_input("Take a photo, Containing English or Bangla texts", on_change=change_photo_state)
uploaded_photo = st.file_uploader("Upload Image, Containing English or Bangla texts",type=['jpg','png','jpeg'], on_change=change_photo_state)
message = st.text_input("Or, drop your text here, only English text!")
if "photo" not in st.session_state:
st.session_state["photo"]="not done"
if st.session_state["photo"]=="done" or message:
if uploaded_photo:
img = Image.open(uploaded_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark here to see in Bangla for Bangla Images only") else pytesseract.image_to_string(img)
st.success(text)
if camera_photo:
img = Image.open(camera_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark here to see Bangla") else pytesseract.image_to_string(img)
st.success(text)
if uploaded_photo==None and camera_photo==None:
#our_image=load_image("image.jpg")
#img = cv2.imread("scholarly_text.jpg")
text = message
# Summarization
if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
#st.subheader("Summarize Your Text for English and Bangla Texts!")
#message = st.text_area("Enter the Text","Type please ..")
#st.text("Using Gensim Summarizer ..")
#st.success(mess)
summary_result = summarize(text)
st.success(summary_result)
elif st.checkbox("Mark here, Better Text Summarization for English only!"):
#st.title("Summarize Your Text for English only!")
tokenizer = AutoTokenizer.from_pretrained('t5-base')
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
#st.text("Using Google T5 Transformer ..")
inputs = tokenizer.encode("summarize: " + text,
return_tensors='pt',
max_length=512,
truncation=True)
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
summary = tokenizer.decode(summary_ids[0])
st.success(summary)
st.sidebar.subheader("About App")
st.sidebar.subheader("By")
st.sidebar.text("Soumen Sarker")
if __name__ == '__main__':
main()
|