File size: 6,767 Bytes
9c37e72 dba2773 9c37e72 68f40bc d82d18a 9c37e72 6e58c44 4834995 bd18577 2f51bd6 c75cc74 3d7adba 9c37e72 09d4214 29e33a8 06dd768 09d4214 0842639 baf370a 9c37e72 1ecea99 fa73ddc 419e04c 9c37e72 b446f5c a07988a af0fae9 b446f5c 29e33a8 9d5dc1c 29e33a8 1a9fa41 c7a7627 3f06691 c7a7627 37287e0 c7a7627 0975d28 c7a7627 37287e0 0975d28 1a9fa41 0975d28 07c7d3a c9a18bc 9c37e72 e113d20 f1ae271 b3b4ade 5e3c2f2 ea6bf13 63c4e55 2bfe916 29e33a8 a2c3102 29e33a8 37287e0 29e33a8 a2c3102 c745dc1 4f3134d 8cc1e8b 6e25163 dd55b25 a811191 5f35583 c7a7627 d0a45f9 5f35583 c7a7627 d0a45f9 6c1c515 c745dc1 4f3134d cd370f7 c7a7627 a811191 c7a7627 d0a45f9 a811191 c7a7627 d0a45f9 c745dc1 4f3134d cd370f7 0975d28 ce65dbf 0975d28 d0a45f9 b0e2f8f 7af9178 b0e2f8f d0a45f9 9c37e72 b9b4937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
"""
#App: NLP App with Streamlit
Description
This is a Natural Language Processing(NLP) base Application that is useful for
Document/Text Summarization from Bangla images and English Images/PDF files.
"""
# Core Pkgs
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#os.system('sudo apt-get install tesseract-ocr-eng')
#os.system('sudo apt-get install tesseract-ocr-ben')
#os.system('wget https://github.com/tesseract-ocr/tessdata/raw/main/ben.traineddata')
#os.system('gunzip ben.traineddata.gz ')
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
#os.system('pip install -q pytesseract')
#os.system('conda install -c conda-forge poppler')
import streamlit as st
st.set_page_config(page_title="Summarization Tool", layout="wide", initial_sidebar_state="expanded")
import torch
import docx2txt
from PIL import Image
from PyPDF2 import PdfFileReader
from pdf2image import convert_from_bytes
import pdfplumber
#from line_cor import mark_region
import pdf2image
import requests
import cv2
import numpy as np
import pytesseract
import line_cor
import altair as alt
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
from PIL import Image
API_URL0 = "https://api-inference.huggingface.co/models/csebuetnlp/mT5_multilingual_XLSum"
headers0 = {"Authorization": "Bearer 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"}
API_URL1 = "https://api-inference.huggingface.co/models/Michael-Vptn/text-summarization-t5-base"
headers1 = {"Authorization": "Bearer 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"}
API_URL2 = "https://api-inference.huggingface.co/models/gpt2"
headers2 = {"Authorization": "Bearer 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"}
def read_pdf(file):
# images=pdf2image.convert_from_path(file)
# # print(type(images))
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_page_text = " "
for i in range(count):
page = pdfReader.getPage(i)
all_page_text += page.extractText()+" "
return all_page_text
# def read_pdf_with_pdfplumber(file):
# # Open the uploaded PDF file with pdfplumber
# with pdfplumber.open(file) as pdf:
# extracted_text = ''
# for page in pdf.pages:
# extracted_text += page.extract_text()
# # Display the extracted text
# #st.text(extracted_text)
# return extracted_text
def engsum(output):
def query(payload):
response = requests.post(API_URL1, headers=headers1, json=payload)
return response.json()
out = query({
"inputs": output,
"min_length":300
})
if isinstance(out, list) and out[0].get("generated_text"):
text_output = out[0]["generated_text"]
st.success(text_output)
def bansum(text):
def query(payload):
response = requests.post(API_URL0, headers=headers0, json=payload)
return response.json()
out = query({"inputs": text, "min_length":300})
if isinstance(out, list) and out[0].get("summary_text"):
text_output = out[0]["summary_text"]
st.success(text_output)
st.title("Bangla and English Summarizer:")
#st.subheader("Input texts to summarize: ")
#@st.cache_resource(experimental_allow_widgets=True)
def main():
""" NLP Based Application with Streamlit """
def change_photo_state():
st.session_state["photo"]="done"
message = st.sidebar.text_input("Type your text here!")
uploaded_photo = st.sidebar.file_uploader("Upload your Images/PDF",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
camera_photo = st.sidebar.camera_input("Capture a photo to summarize: ", on_change=change_photo_state)
if "photo" not in st.session_state:
st.session_state["photo"]="not done"
if st.session_state["photo"]=="done" or message:
if uploaded_photo and uploaded_photo.type=='application/pdf':
tet = read_pdf(uploaded_photo)
# with tempfile.NamedTemporaryFile(delete=False) as temp_file:
# temp_file.write(uploaded_photo.read())
# temp_file_path = temp_file.name
# loader = PyPDFLoader(temp_file_path)
# if loader:
# text.extend(loader.load())
# os.remove(temp_file_path)
# text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
# text_chunks = text_splitter.split_documents(text)
values = st.slider('Select a approximate number of lines to see and summarize',value=[0, len(tet)//(7*100)])
text = tet[values[0]*7*10:values[1]*10*100] if values[0]!=len(tet)//(10*100) else tet[len(tet)//(10*100):]
st.text("Selected text for summarize: ")
#st.success(type(text_chunks))
st.success(text)
st.text("Summarized Text: ")
engsum(text)
elif uploaded_photo and uploaded_photo.type !='application/pdf':
text=None
img = Image.open(uploaded_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
st.text("Select the summarization type:")
if st.button("BENGALI"):
text = pytesseract.image_to_string(img, lang="ben")
bansum(text)
if st.button("ENGLISH"):
text=pytesseract.image_to_string(img)
engsum(text)
#st.success(text)
elif camera_photo:
text=None
img = Image.open(camera_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
#text = pytesseract.image_to_string(img) if st.checkbox("Bangla") else pytesseract.image_to_string(img, lang="ben")
st.text("Select the summarization type:")
if st.button("Bangla"):
text = pytesseract.image_to_string(img, lang="ben")
bansum(text)
if st.button("English"):
text=pytesseract.image_to_string(img)
engsum(text)
else:
text=None
text = message
if st.button("Bangla"):
bansum(text)
if st.button("English"):
engsum(text)
# if st.button("English Text Generation"):
# def query(payload):
# response = requests.post(API_URL2, headers=headers2, json=payload)
# return response.json()
# out = query({
# "inputs": text,
# })
# if isinstance(out, list) and out[0].get("generated_text"):
# text_output = out[0]["generated_text"]
# st.success(text_output)
# #text=text_output
if __name__ == '__main__':
main()
|