File size: 4,642 Bytes
10e9b7d
 
eccf8e4
3c4371f
c43e884
d646f48
c43e884
d646f48
d916609
d646f48
3db6293
d646f48
 
e80aab9
d646f48
e90a59c
ea8d34e
d646f48
e90a59c
f5312d4
03a5300
c43e884
d646f48
31243f4
49aa693
2ba19e9
e7545b5
d1458e5
d646f48
d1458e5
31243f4
03a5300
f5312d4
d646f48
36ed51a
3c4371f
d646f48
eccf8e4
d646f48
7d65c66
03a5300
 
 
7d65c66
03a5300
e80aab9
03a5300
 
582b41a
03a5300
31243f4
d646f48
 
31243f4
4d674d3
d646f48
 
 
03a5300
d646f48
03a5300
d646f48
582b41a
03a5300
 
 
 
 
 
 
 
791c8cd
03a5300
582b41a
03a5300
582b41a
d646f48
 
 
791c8cd
03a5300
 
98f0864
03a5300
582b41a
d646f48
03a5300
31243f4
03a5300
 
2135e75
d646f48
2135e75
d646f48
03a5300
d646f48
e80aab9
03a5300
 
 
d646f48
03a5300
d646f48
e80aab9
d646f48
 
 
e80aab9
03a5300
d646f48
7d65c66
03a5300
d646f48
 
e80aab9
03a5300
c43e884
03a5300
 
 
c43e884
e80aab9
7e4a06b
03a5300
 
 
e80aab9
03a5300
7d65c66
03a5300
d646f48
03a5300
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import gradio as gr
import requests
import pandas as pd
import asyncio
import json
from huggingface_hub import login
from smolagents import CodeAgent, InferenceClientModel, DuckDuckGoSearchTool

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
QUESTIONS_URL = f"{DEFAULT_API_URL}/questions"
SUBMIT_URL = f"{DEFAULT_API_URL}/submit"

# --- Hugging Face Login ---
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])

# --- Define Tools ---
search_tool = DuckDuckGoSearchTool()

# --- Main Async Function ---
async def run_and_submit_all(profile: gr.OAuthProfile | None):
    # Initialize Agent
    try:
        agent = CodeAgent(
            tools=[search_tool],
            model=InferenceClientModel(model="mistralai/Magistral-Small-2506"),
            max_steps=5,
            verbosity_level=2
        )
    except Exception as e:
        return f"❌ Agent Initialization Error: {e}", None

    space_id = os.getenv("SPACE_ID", "unknown")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    # Fetch questions
    try:
        response = requests.get(QUESTIONS_URL, timeout=15)
        response.raise_for_status()
        questions = response.json()
        if not questions:
            return "⚠️ No questions received.", None
    except Exception as e:
        return f"❌ Failed to fetch questions: {e}", None

    answers = []
    logs = []

    for item in questions:
        task_id = item.get("task_id")
        question = item.get("question")
        if not task_id or not question:
            continue

        system_prompt = (
            "You are a general AI assistant. I will ask you a question. "
            "Report your thoughts, and finish your answer with the following template: "
            "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.\n\n"
        )
        full_prompt = system_prompt + f"Question: {question.strip()}"

        try:
            loop = asyncio.get_running_loop()
            result = await loop.run_in_executor(None, lambda: agent(full_prompt))

            if isinstance(result, dict) and "final_answer" in result:
                final_answer = str(result["final_answer"]).strip()
            elif isinstance(result, str):
                if "FINAL ANSWER:" in result:
                    final_answer = result.split("FINAL ANSWER:")[-1].strip()
                else:
                    final_answer = result.strip()
            else:
                final_answer = str(result).strip()

        except Exception as e:
            print(f"[ERROR] Task {task_id} failed: {e}")
            final_answer = f"AGENT ERROR: {e}"

        answers.append({"task_id": task_id, "model_answer": final_answer})
        logs.append({"Task ID": task_id, "Question": question, "Submitted Answer": final_answer})

    valid_answers = [a for a in answers if isinstance(a["task_id"], str) and isinstance(a["model_answer"], str)]

    if not valid_answers:
        return "❌ Agent produced no valid answers.", pd.DataFrame(logs)

    submission = {
        "username": profile.username if profile else "unknown",
        "agent_code": agent_code,
        "answers": valid_answers
    }

    print("[DEBUG] Submitting:\n", json.dumps(submission, indent=2))

    try:
        resp = requests.post(SUBMIT_URL, json=submission, timeout=60)
        resp.raise_for_status()
        result_data = resp.json()

        summary = (
            f"βœ… Submission Successful\n"
            f"User: {result_data.get('username')}\n"
            f"Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count')}/{result_data.get('total_attempted')})\n"
            f"Message: {result_data.get('message', 'No message.')}"
        )
        return summary, pd.DataFrame(logs)

    except Exception as e:
        return f"❌ Submission failed: {e}", pd.DataFrame(logs)

# --- Gradio UI ---
with gr.Blocks() as demo:
    gr.Markdown("# 🧠 GAIA Agent Evaluation Interface")
    gr.Markdown("""
    - Log in with your Hugging Face account.
    - Click the button below to run the agent and submit the answers.
    - Wait for the final score to appear.
    """)

    gr.LoginButton()
    run_button = gr.Button("πŸš€ Run Evaluation & Submit")
    status = gr.Textbox(label="Status", lines=6)
    table = gr.DataFrame(label="Answer Log")

    run_button.click(fn=run_and_submit_all, outputs=[status, table])

# --- Launch ---
if __name__ == "__main__":
    print("Launching Agent Space...")
    demo.launch(debug=True)