Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Tokenization classes for RWKV6.""" | |
import os | |
import re | |
from typing import TYPE_CHECKING, List, Optional, Tuple | |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer | |
from transformers.utils import logging | |
if TYPE_CHECKING: | |
pass | |
logger = logging.get_logger(__name__) | |
VOCAB_FILES_NAMES = { | |
"vocab_file": "rwkv_vocab_v20230424.txt", | |
} | |
class TRIE: | |
__slots__ = tuple("ch,to,values,front".split(",")) | |
to: list | |
values: set | |
def __init__(self, front=None, ch=None): | |
self.ch = ch | |
self.to = [None for ch in range(256)] | |
self.values = set() | |
self.front = front | |
def __repr__(self): | |
fr = self | |
ret = [] | |
while fr != None: | |
if fr.ch != None: | |
ret.append(fr.ch) | |
fr = fr.front | |
return "<TRIE %s %s>" % (ret[::-1], self.values) | |
def add(self, key: bytes, idx: int = 0, val=None): | |
if idx == len(key): | |
if val is None: | |
val = key | |
self.values.add(val) | |
return self | |
ch = key[idx] | |
if self.to[ch] is None: | |
self.to[ch] = TRIE(front=self, ch=ch) | |
return self.to[ch].add(key, idx=idx + 1, val=val) | |
def find_longest(self, key: bytes, idx: int = 0): | |
u: TRIE = self | |
ch: int = key[idx] | |
while u.to[ch] is not None: | |
u = u.to[ch] | |
idx += 1 | |
if u.values: | |
ret = idx, u, u.values | |
if idx == len(key): | |
break | |
ch = key[idx] | |
return ret | |
class RWKV_TOKENIZER: | |
def __init__(self, file_name): | |
self.idx2token = {} | |
sorted = [] # must be already sorted | |
with open(file_name, "r", encoding="utf-8") as f: | |
lines = f.readlines() | |
for l in lines: | |
idx = int(l[: l.index(" ")]) | |
x = eval(l[l.index(" ") : l.rindex(" ")]) | |
x = x.encode("utf-8") if isinstance(x, str) else x | |
assert isinstance(x, bytes) | |
assert len(x) == int(l[l.rindex(" ") :]) | |
sorted += [x] | |
self.idx2token[idx] = x | |
self.token2idx = {} | |
for k, v in self.idx2token.items(): | |
self.token2idx[v] = int(k) | |
self.root = TRIE() | |
for t, i in self.token2idx.items(): | |
_ = self.root.add(t, val=(t, i)) | |
def encodeBytes(self, src: bytes): | |
idx: int = 0 | |
tokens = [] | |
while idx < len(src): | |
_idx: int = idx | |
idx, _, values = self.root.find_longest(src, idx) | |
assert idx != _idx | |
_, token = next(iter(values)) | |
tokens.append(token) | |
return tokens | |
def decodeBytes(self, tokens): | |
return b"".join(map(lambda i: self.idx2token[i], tokens)) | |
def encode(self, src): | |
if isinstance(src, str): | |
return [self.encodeBytes(src.encode("utf-8"))] | |
elif isinstance(src, list): | |
return [self.encodeBytes(s.encode("utf-8")) for s in src] | |
def decode(self, tokens): | |
return [self.decodeBytes(batch).decode("utf-8") for batch in tokens] | |
# try: | |
# return self.decodeBytes(tokens).decode('utf-8') | |
# except: | |
# return '\ufffd' # bad utf-8 | |
def printTokens(self, tokens): | |
for i in tokens: | |
s = self.idx2token[i] | |
try: | |
s = s.decode("utf-8") | |
except: | |
pass | |
print(f"{repr(s)}{i}", end=" ") | |
print() | |
class Rwkv6Tokenizer(PreTrainedTokenizer): | |
vocab_files_names = VOCAB_FILES_NAMES | |
model_input_names = ["input_ids", "attention_mask"] | |
def __init__( | |
self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs | |
): | |
if not os.path.isfile(vocab_file): | |
raise ValueError( | |
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" | |
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" | |
) | |
with open(vocab_file, "r", encoding="utf-8") as reader: | |
tokens = reader.readlines() | |
if "add_bos_token" in kwargs: | |
self.add_bos_token = kwargs["add_bos_token"] | |
else: | |
self.add_bos_token = False | |
self.trie_tokenizer = RWKV_TOKENIZER(vocab_file) | |
vocab = self.trie_tokenizer.token2idx | |
self.encoder = vocab | |
self.decoder = {v: k for k, v in vocab.items()} | |
self._added_tokens_decoder = {0: AddedToken(str(bos_token))} | |
super().__init__( | |
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs | |
) | |
def vocab_size(self): | |
return len(self.encoder) | |
def get_vocab(self): | |
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)} | |
vocab.update(self.added_tokens_encoder) | |
return vocab | |
def _tokenize(self, text, split_special_tokens=False): | |
# return self.wordpiece_tokenizer.tokenize(text.encode("utf-8")) | |
return self.trie_tokenizer.encode(text)[0] | |
def _convert_token_to_id(self, token): | |
return token | |
def _convert_id_to_token(self, index): | |
"""Converts an index (integer) in a token (byte) using the vocab.""" | |
token = self.decoder.get(index, self.unk_token) | |
if isinstance(token, (bytes)): | |
token = token.decode("utf-8", errors="replace") | |
return token | |
def convert_tokens_to_string(self, tokens): | |
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes""" | |
out_string = b"".join( | |
[k.encode(errors="replace") if isinstance(k, str) else k for k in tokens] | |
).decode("utf-8") | |
return out_string | |
def save_vocabulary( | |
self, save_directory: str, filename_prefix: Optional[str] = None | |
) -> Tuple[str]: | |
index = 0 | |
if os.path.isdir(save_directory): | |
vocab_file = os.path.join( | |
save_directory, | |
(filename_prefix + "-" if filename_prefix else "") + "vocab.txt", | |
) | |
else: | |
vocab_file = ( | |
filename_prefix + "-" if filename_prefix else "" | |
) + save_directory | |
with open(vocab_file, "w", encoding="utf-8") as writer: | |
for token, token_index in sorted( | |
self.encoder.items(), key=lambda kv: kv[1] | |
): | |
if index != token_index: | |
logger.warning( | |
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." | |
" Please check that the vocabulary is not corrupted!" | |
) | |
index = token_index | |
writer.write(str(token) + "\n") | |
index += 1 | |
return (vocab_file,) | |
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | |
if self.add_bos_token: | |
bos_token_ids = [self.bos_token_id] | |
else: | |
bos_token_ids = [] | |
output = bos_token_ids + token_ids_0 | |
if token_ids_1 is None: | |
return output | |
return output + bos_token_ids + token_ids_1 | |
def get_special_tokens_mask( | |
self, | |
token_ids_0: List[int], | |
token_ids_1: Optional[List[int]] = None, | |
already_has_special_tokens: bool = False, | |
) -> List[int]: | |
""" | |
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding | |
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. | |
Args: | |
token_ids_0 (`List[int]`): | |
List of IDs. | |
token_ids_1 (`List[int]`, *optional*): | |
Optional second list of IDs for sequence pairs. | |
already_has_special_tokens (`bool`, *optional*, defaults to `False`): | |
Whether or not the token list is already formatted with special tokens for the model. | |
Returns: | |
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | |
""" | |
if already_has_special_tokens: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, | |
token_ids_1=token_ids_1, | |
already_has_special_tokens=True, | |
) | |
if not self.add_bos_token: | |
return super().get_special_tokens_mask( | |
token_ids_0=token_ids_0, | |
token_ids_1=token_ids_1, | |
already_has_special_tokens=False, | |
) | |
if token_ids_1 is None: | |
return [1] + ([0] * len(token_ids_0)) | |
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) | |