Spaces:
Running
Running
import math | |
import torch | |
import torch.nn.functional as F | |
import pytest | |
from einops import rearrange, repeat | |
from mamba_ssm.ops.triton.layernorm_gated import layernorm_fn, rms_norm_ref | |
# @pytest.mark.parametrize("norm_before_gate", [False]) | |
# @pytest.mark.parametrize("has_group", [False]) | |
# @pytest.mark.parametrize("is_rms_norm", [True]) | |
# @pytest.mark.parametrize("has_z", [True]) | |
# @pytest.mark.parametrize("has_bias", [False]) | |
# @pytest.mark.parametrize('dtype', [torch.float32, torch.float16, torch.bfloat16]) | |
# @pytest.mark.parametrize("wtype", [torch.float32, torch.float16, torch.bfloat16]) | |
# @pytest.mark.parametrize('d', [4096]) | |
def test_layer_norm_gated(d, dtype, wtype, has_bias, has_z, is_rms_norm, has_group, norm_before_gate): | |
if not has_z and not norm_before_gate: | |
pytest.skip() | |
if not norm_before_gate and not is_rms_norm: # Reference LN isn't implemented for this case yet | |
pytest.skip() | |
device = 'cuda' | |
rtol, atol = (1e-5, 1e-5) if dtype == torch.float32 else (1e-2, 8e-3) | |
group_size = None if not has_group else 64 | |
# set seed | |
torch.random.manual_seed(0) | |
batch = 16 | |
seqlen = 1024 | |
x = torch.randn(batch, seqlen, d, dtype=dtype, device=device, requires_grad=True) | |
if has_z: | |
z = torch.randn(batch, seqlen, d, dtype=dtype, device=device, requires_grad=True) | |
else: | |
z = None | |
weight = torch.randn(d, dtype=wtype, device=device, requires_grad=True) | |
if has_bias: | |
bias = torch.randn(d, dtype=wtype, device=device, requires_grad=True) | |
else: | |
bias = None | |
x_ref = x.detach().clone().requires_grad_() | |
x_pt = x.detach().clone().requires_grad_() | |
z_ref = z.detach().clone().requires_grad_() if z is not None else None | |
z_pt = z.detach().clone().requires_grad_() if z is not None else None | |
weight_ref = weight.detach().clone().requires_grad_() | |
weight_pt = weight.detach().clone().requires_grad_() | |
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None | |
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None | |
out = layernorm_fn(x, weight, bias, z=z, eps=1e-5, group_size=group_size, norm_before_gate=norm_before_gate, | |
is_rms_norm=is_rms_norm) | |
if not is_rms_norm: | |
if not has_group: | |
out_ref = F.layer_norm(x_ref.float(), (d,), weight=weight_ref.float(), bias=bias_ref.float() if bias_ref is not None else None, eps=1e-5) | |
out_pt = F.layer_norm(x_pt.to(wtype), (d,), weight=weight_pt, bias=bias_pt, eps=1e-5) | |
else: | |
out_ref = rearrange(F.layer_norm(rearrange(x_ref, "... (g d) -> ... g d", d=group_size).float(), (group_size,), eps=1e-5), "... g d -> ... (g d)") * weight_ref.float() | |
if has_bias: | |
out_ref = out_ref + bias_ref.float() | |
out_pt = rearrange(F.layer_norm(rearrange(x_pt, "... (g d) -> ... g d", d=group_size), (group_size,), eps=1e-5), "... g d -> ... (g d)") * weight_pt | |
if has_bias: | |
out_pt = out_pt + bias_pt | |
if has_z and norm_before_gate: | |
out_ref = out_ref * F.silu(z_ref.float()) | |
out_pt = out_pt * F.silu(z_pt) | |
else: | |
out_ref = rms_norm_ref(x_ref, weight_ref, bias_ref, z=z_ref, eps=1e-5, group_size=group_size, | |
norm_before_gate=norm_before_gate) | |
out_pt = rms_norm_ref(x_pt, weight_pt, bias_pt, z=z_pt, eps=1e-5, group_size=group_size, | |
norm_before_gate=norm_before_gate, upcast=False) | |
print(f"Max diff = {(out - out_ref).abs().max().item()}") | |
print(f"Max diff Pytorch = {(out_pt - out_ref).abs().max().item()}") | |
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + atol | |
g = torch.randn_like(out) | |
out.backward(g) | |
out_ref.backward(g) | |
out_pt.backward(g) | |
print(f"Max dx diff = {(x.grad - x_ref.grad).abs().max().item()}") | |
print(f"Max dx diff Pytorch = {(x_pt.grad - x_ref.grad).abs().max().item()}") | |
if has_z: | |
print(f"Max dz diff = {(z.grad - z_ref.grad).abs().max().item()}") | |
print(f"Max dz diff Pytorch = {(z_pt.grad - z_ref.grad).abs().max().item()}") | |
print(f"Max dw diff = {(weight.grad - weight_ref.grad).abs().max().item()}") | |
print(f"Max dw diff Pytorch = {(weight_pt.grad - weight_ref.grad).abs().max().item()}") | |
if has_bias: | |
print(f"Max db diff = {(bias.grad - bias_ref.grad).abs().max().item()}") | |
print(f"Max db diff Pytorch = {(bias_pt.grad - bias_ref.grad).abs().max().item()}") | |
assert (x.grad - x_ref.grad).abs().max().item() <= 2 * (x_pt.grad - x_ref.grad).abs().max().item() + atol | |
if has_z: | |
assert (z.grad - z_ref.grad).abs().max().item() <= 2 * (z_pt.grad - z_ref.grad).abs().max().item() + atol | |
assert (weight.grad - weight_ref.grad).abs().max().item() <= 2 * (weight_pt.grad - weight_ref.grad).abs().max().item() + atol | |
if has_bias: | |
assert (bias.grad - bias_ref.grad).abs().max().item() <= 2 * (bias_pt.grad - bias_ref.grad).abs().max().item() + atol | |