cpu-casuallm / mamba /tests /ops /triton /test_layernorm_gated.py
Somunia's picture
Upload 116 files
306b4ac verified
import math
import torch
import torch.nn.functional as F
import pytest
from einops import rearrange, repeat
from mamba_ssm.ops.triton.layernorm_gated import layernorm_fn, rms_norm_ref
@pytest.mark.parametrize("norm_before_gate", [True, False])
# @pytest.mark.parametrize("norm_before_gate", [False])
@pytest.mark.parametrize("has_group", [False, True])
# @pytest.mark.parametrize("has_group", [False])
@pytest.mark.parametrize("is_rms_norm", [False, True])
# @pytest.mark.parametrize("is_rms_norm", [True])
@pytest.mark.parametrize("has_z", [False, True])
# @pytest.mark.parametrize("has_z", [True])
@pytest.mark.parametrize("has_bias", [False, True])
# @pytest.mark.parametrize("has_bias", [False])
# @pytest.mark.parametrize('dtype', [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize('dtype', [torch.float16])
# @pytest.mark.parametrize("wtype", [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("wtype", [torch.float32])
@pytest.mark.parametrize('d', [2048, 4096])
# @pytest.mark.parametrize('d', [4096])
def test_layer_norm_gated(d, dtype, wtype, has_bias, has_z, is_rms_norm, has_group, norm_before_gate):
if not has_z and not norm_before_gate:
pytest.skip()
if not norm_before_gate and not is_rms_norm: # Reference LN isn't implemented for this case yet
pytest.skip()
device = 'cuda'
rtol, atol = (1e-5, 1e-5) if dtype == torch.float32 else (1e-2, 8e-3)
group_size = None if not has_group else 64
# set seed
torch.random.manual_seed(0)
batch = 16
seqlen = 1024
x = torch.randn(batch, seqlen, d, dtype=dtype, device=device, requires_grad=True)
if has_z:
z = torch.randn(batch, seqlen, d, dtype=dtype, device=device, requires_grad=True)
else:
z = None
weight = torch.randn(d, dtype=wtype, device=device, requires_grad=True)
if has_bias:
bias = torch.randn(d, dtype=wtype, device=device, requires_grad=True)
else:
bias = None
x_ref = x.detach().clone().requires_grad_()
x_pt = x.detach().clone().requires_grad_()
z_ref = z.detach().clone().requires_grad_() if z is not None else None
z_pt = z.detach().clone().requires_grad_() if z is not None else None
weight_ref = weight.detach().clone().requires_grad_()
weight_pt = weight.detach().clone().requires_grad_()
bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
bias_pt = bias.detach().clone().requires_grad_() if bias is not None else None
out = layernorm_fn(x, weight, bias, z=z, eps=1e-5, group_size=group_size, norm_before_gate=norm_before_gate,
is_rms_norm=is_rms_norm)
if not is_rms_norm:
if not has_group:
out_ref = F.layer_norm(x_ref.float(), (d,), weight=weight_ref.float(), bias=bias_ref.float() if bias_ref is not None else None, eps=1e-5)
out_pt = F.layer_norm(x_pt.to(wtype), (d,), weight=weight_pt, bias=bias_pt, eps=1e-5)
else:
out_ref = rearrange(F.layer_norm(rearrange(x_ref, "... (g d) -> ... g d", d=group_size).float(), (group_size,), eps=1e-5), "... g d -> ... (g d)") * weight_ref.float()
if has_bias:
out_ref = out_ref + bias_ref.float()
out_pt = rearrange(F.layer_norm(rearrange(x_pt, "... (g d) -> ... g d", d=group_size), (group_size,), eps=1e-5), "... g d -> ... (g d)") * weight_pt
if has_bias:
out_pt = out_pt + bias_pt
if has_z and norm_before_gate:
out_ref = out_ref * F.silu(z_ref.float())
out_pt = out_pt * F.silu(z_pt)
else:
out_ref = rms_norm_ref(x_ref, weight_ref, bias_ref, z=z_ref, eps=1e-5, group_size=group_size,
norm_before_gate=norm_before_gate)
out_pt = rms_norm_ref(x_pt, weight_pt, bias_pt, z=z_pt, eps=1e-5, group_size=group_size,
norm_before_gate=norm_before_gate, upcast=False)
print(f"Max diff = {(out - out_ref).abs().max().item()}")
print(f"Max diff Pytorch = {(out_pt - out_ref).abs().max().item()}")
assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + atol
g = torch.randn_like(out)
out.backward(g)
out_ref.backward(g)
out_pt.backward(g)
print(f"Max dx diff = {(x.grad - x_ref.grad).abs().max().item()}")
print(f"Max dx diff Pytorch = {(x_pt.grad - x_ref.grad).abs().max().item()}")
if has_z:
print(f"Max dz diff = {(z.grad - z_ref.grad).abs().max().item()}")
print(f"Max dz diff Pytorch = {(z_pt.grad - z_ref.grad).abs().max().item()}")
print(f"Max dw diff = {(weight.grad - weight_ref.grad).abs().max().item()}")
print(f"Max dw diff Pytorch = {(weight_pt.grad - weight_ref.grad).abs().max().item()}")
if has_bias:
print(f"Max db diff = {(bias.grad - bias_ref.grad).abs().max().item()}")
print(f"Max db diff Pytorch = {(bias_pt.grad - bias_ref.grad).abs().max().item()}")
assert (x.grad - x_ref.grad).abs().max().item() <= 2 * (x_pt.grad - x_ref.grad).abs().max().item() + atol
if has_z:
assert (z.grad - z_ref.grad).abs().max().item() <= 2 * (z_pt.grad - z_ref.grad).abs().max().item() + atol
assert (weight.grad - weight_ref.grad).abs().max().item() <= 2 * (weight_pt.grad - weight_ref.grad).abs().max().item() + atol
if has_bias:
assert (bias.grad - bias_ref.grad).abs().max().item() <= 2 * (bias_pt.grad - bias_ref.grad).abs().max().item() + atol