Somunia's picture
Upload 116 files
306b4ac verified
# Copyright (c) 2024, Tri Dao, Albert Gu.
from typing import Optional
import torch
from torch import nn, Tensor
from mamba_ssm.ops.triton.layer_norm import RMSNorm, layer_norm_fn
class Block(nn.Module):
def __init__(
self, dim, mixer_cls, mlp_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False
):
"""
Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
This Block has a slightly different structure compared to a regular
prenorm Transformer block.
The standard block is: LN -> MHA/MLP -> Add.
[Ref: https://arxiv.org/abs/2002.04745]
Here we have: Add -> LN -> Mixer, returning both
the hidden_states (output of the mixer) and the residual.
This is purely for performance reasons, as we can fuse add and LayerNorm.
The residual needs to be provided (except for the very first block).
"""
super().__init__()
self.residual_in_fp32 = residual_in_fp32
self.fused_add_norm = fused_add_norm
self.norm = norm_cls(dim)
self.mixer = mixer_cls(dim)
if mlp_cls is not nn.Identity:
self.norm2 = norm_cls(dim)
self.mlp = mlp_cls(dim)
else:
self.mlp = None
if self.fused_add_norm:
assert RMSNorm is not None, "RMSNorm import fails"
assert isinstance(
self.norm, (nn.LayerNorm, RMSNorm)
), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
def forward(
self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None, **mixer_kwargs
):
r"""Pass the input through the encoder layer.
Args:
hidden_states: the sequence to the encoder layer (required).
residual: hidden_states = Mixer(LN(residual))
"""
if not self.fused_add_norm:
residual = (hidden_states + residual) if residual is not None else hidden_states
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
hidden_states, residual = layer_norm_fn(
hidden_states,
self.norm.weight,
self.norm.bias,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
eps=self.norm.eps,
is_rms_norm=isinstance(self.norm, RMSNorm)
)
hidden_states = self.mixer(hidden_states, inference_params=inference_params, **mixer_kwargs)
if self.mlp is not None:
if not self.fused_add_norm:
residual = hidden_states + residual
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
else:
hidden_states, residual = layer_norm_fn(
hidden_states,
self.norm2.weight,
self.norm2.bias,
residual=residual,
prenorm=True,
residual_in_fp32=self.residual_in_fp32,
eps=self.norm2.eps,
is_rms_norm=isinstance(self.norm2, RMSNorm)
)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)