Spaces:
Running
Running
# Copyright (c) 2024, Albert Gu and Tri Dao. | |
"""Minimal implementation of SSD. | |
This is the same as Listing 1 from the paper. | |
""" | |
import torch | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined | |
def segsum_unstable(x): | |
"""Naive segment sum calculation.""" | |
T = x.size(-1) | |
x_cumsum = torch.cumsum(x, dim=-1) | |
x_segsum = x_cumsum[..., :, None] - x_cumsum[..., None, :] | |
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=0) | |
x_segsum = x_segsum.masked_fill(~mask, -torch.inf) | |
return x_segsum | |
def segsum(x): | |
"""More stable segment sum calculation.""" | |
T = x.size(-1) | |
x = repeat(x, "... d -> ... d e", e=T) | |
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=-1) | |
x = x.masked_fill(~mask, 0) | |
x_segsum = torch.cumsum(x, dim=-2) | |
mask = torch.tril(torch.ones(T, T, device=x.device, dtype=bool), diagonal=0) | |
x_segsum = x_segsum.masked_fill(~mask, -torch.inf) | |
return x_segsum | |
def ssd_minimal_discrete(X, A, B, C, block_len, initial_states=None): | |
""" | |
Arguments: | |
X: (batch, length, n_heads, d_head) | |
A: (batch, length, n_heads) | |
B: (batch, length, n_heads, d_state) | |
C: (batch, length, n_heads, d_state) | |
Return: | |
Y: (batch, length, n_heads, d_head) | |
""" | |
assert X.dtype == A.dtype == B.dtype == C.dtype | |
assert X.shape[1] % block_len == 0 | |
# Rearrange into blocks/chunks | |
X, A, B, C = [rearrange(x, "b (c l) ... -> b c l ...", l=block_len) for x in (X, A, B, C)] | |
A = rearrange(A, "b c l h -> b h c l") | |
A_cumsum = torch.cumsum(A, dim=-1) | |
# 1. Compute the output for each intra-chunk (diagonal blocks) | |
L = torch.exp(segsum(A)) | |
Y_diag = torch.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C, B, L, X) | |
# 2. Compute the state for each intra-chunk | |
# (right term of low-rank factorization of off-diagonal blocks; B terms) | |
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum)) | |
states = torch.einsum("bclhn,bhcl,bclhp->bchpn", B, decay_states, X) | |
# 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries | |
# (middle term of factorization of off-diag blocks; A terms) | |
if initial_states is None: | |
initial_states = torch.zeros_like(states[:, :1]) | |
states = torch.cat([initial_states, states], dim=1) | |
decay_chunk = torch.exp(segsum(F.pad(A_cumsum[:, :, :, -1], (1, 0)))) | |
new_states = torch.einsum("bhzc,bchpn->bzhpn", decay_chunk, states) | |
states, final_state = new_states[:, :-1], new_states[:, -1] | |
# 4. Compute state -> output conversion per chunk | |
# (left term of low-rank factorization of off-diagonal blocks; C terms) | |
state_decay_out = torch.exp(A_cumsum) | |
Y_off = torch.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out) | |
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks) | |
Y = rearrange(Y_diag+Y_off, "b c l h p -> b (c l) h p") | |
return Y, final_state | |
# Simple test | |
def test_correctness(): | |
torch.manual_seed(42) | |
## Dimensions | |
# Denoted (B, T, Q, D, P) in the paper | |
batch, seqlen, chunk_size, dim, headdim = 1, 2048, 64, 2048, 64 | |
nheads = dim // headdim # (H) in the paper | |
ngroups = 1 # (G) in the paper | |
dstate = 64 # (N) in the paper | |
dtype = torch.float32 | |
device = "cuda" | |
x = torch.randn(batch, seqlen, nheads, headdim, dtype=dtype, device=device) | |
dt = F.softplus(torch.randn(batch, seqlen, nheads, dtype=torch.float32, device=device) - 4).requires_grad_() | |
A = (-torch.exp(torch.rand(nheads, dtype=torch.float32, device=device))).requires_grad_() | |
B = torch.randn(batch, seqlen, ngroups, dstate, dtype=dtype, device=device) | |
C = torch.randn(batch, seqlen, ngroups, dstate, dtype=dtype, device=device) | |
D = torch.randn(nheads, dtype=dtype, device=device) | |
# Comparing fused version and minimal version | |
y = mamba_chunk_scan_combined(x, dt, A, B, C, chunk_size, D=None) | |
y_min, _ = ssd_minimal_discrete(x*dt.unsqueeze(-1), A*dt, B, C, chunk_size) | |