Spaces:
Sleeping
Sleeping
| # Copyright (c) 2024, Tri Dao, Albert Gu. | |
| from torch import nn | |
| from torch.nn import functional as F | |
| class GatedMLP(nn.Module): | |
| def __init__( | |
| self, | |
| in_features, | |
| hidden_features=None, | |
| out_features=None, | |
| activation=F.silu, | |
| bias=False, | |
| multiple_of=128, | |
| device=None, | |
| dtype=None, | |
| ): | |
| factory_kwargs = {"device": device, "dtype": dtype} | |
| super().__init__() | |
| out_features = out_features if out_features is not None else in_features | |
| hidden_features = ( | |
| hidden_features if hidden_features is not None else int(8 * in_features / 3) | |
| ) | |
| hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of | |
| self.fc1 = nn.Linear(in_features, 2 * hidden_features, bias=bias, **factory_kwargs) | |
| self.activation = activation | |
| self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, **factory_kwargs) | |
| def forward(self, x): | |
| y = self.fc1(x) | |
| y, gate = y.chunk(2, dim=-1) | |
| y = y * self.activation(gate) | |
| y = self.fc2(y) | |
| return y | |