Spaces:
Running
Running
# Copyright (c) 2024, Tri Dao, Albert Gu. | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
try: | |
from flash_attn import flash_attn_with_kvcache | |
except ImportError: | |
flash_attn_with_kvcache = None | |
try: | |
from flash_attn.layers.rotary import RotaryEmbedding | |
except ImportError: | |
RotaryEmbedding = None | |
try: | |
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update | |
except ImportError: | |
causal_conv1d_fn, causal_conv1d_update = None, None | |
def _update_kv_cache(kv, inference_params, layer_idx): | |
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" | |
# Pre-allocate memory for key-values for inference. | |
num_heads, head_dim = kv.shape[-2:] | |
assert layer_idx in inference_params.key_value_memory_dict | |
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx] | |
# Adjust key and value for inference | |
batch_start = inference_params.batch_size_offset | |
batch_end = batch_start + kv.shape[0] | |
sequence_start = inference_params.seqlen_offset | |
sequence_end = sequence_start + kv.shape[1] | |
assert batch_end <= kv_cache.shape[0] | |
assert sequence_end <= kv_cache.shape[1] | |
assert kv_cache is not None | |
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv | |
return kv_cache[batch_start:batch_end, :sequence_end, ...] | |
class MHA(nn.Module): | |
"""Multi-head self-attention and cross-attention""" | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
num_heads_kv=None, | |
head_dim=None, # If None, use embed_dim // num_heads | |
mlp_dim=0, | |
qkv_proj_bias=True, | |
out_proj_bias=True, | |
softmax_scale=None, | |
causal=False, | |
layer_idx=None, | |
d_conv=0, | |
rotary_emb_dim=0, | |
rotary_emb_base=10000.0, | |
rotary_emb_interleaved=False, | |
device=None, | |
dtype=None, | |
) -> None: | |
""" | |
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads. | |
return_residual: whether to return the input x along with the output. This is for | |
performance reason: for post-norm architecture, returning the input allows us | |
to fuse the backward of nn.Linear with the residual connection. | |
""" | |
factory_kwargs = {"device": device, "dtype": dtype} | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.layer_idx = layer_idx | |
self.d_conv = d_conv | |
self.rotary_emb_dim = rotary_emb_dim | |
self.softmax_scale = softmax_scale | |
self.causal = causal | |
self.num_heads = num_heads | |
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads | |
assert ( | |
self.num_heads % self.num_heads_kv == 0 | |
), "num_heads must be divisible by num_heads_kv" | |
if head_dim is None: | |
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads" | |
self.head_dim = head_dim if head_dim is not None else self.embed_dim // num_heads | |
self.mlp_dim = math.ceil(mlp_dim / 256) * 256 | |
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv) | |
out_dim = self.head_dim * self.num_heads | |
if self.rotary_emb_dim > 0: | |
assert RotaryEmbedding is not None, "rotary requires flash_attn to be installed" | |
self.rotary_emb = RotaryEmbedding( | |
self.rotary_emb_dim, | |
base=rotary_emb_base, | |
interleaved=rotary_emb_interleaved, | |
device=device, | |
) | |
self.in_proj = nn.Linear(embed_dim, qkv_dim + self.mlp_dim, bias=qkv_proj_bias, **factory_kwargs) | |
if self.d_conv > 0: | |
self.conv1d = nn.Conv1d( | |
qkv_dim, qkv_dim, kernel_size=self.d_conv, padding=self.d_conv - 1, groups=qkv_dim, | |
**factory_kwargs | |
) | |
self.out_proj = nn.Linear(out_dim + self.mlp_dim // 2, embed_dim, bias=out_proj_bias, **factory_kwargs) | |
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None): | |
dtype = self.out_proj.weight.dtype if dtype is None else dtype | |
device = self.out_proj.weight.device | |
if self.d_conv > 0: | |
conv_state = torch.zeros( | |
batch_size, self.conv1d.weight.shape[0], self.d_conv, device=device, dtype=dtype | |
) | |
else: | |
conv_state = None | |
kv_cache = torch.empty( | |
batch_size, max_seqlen, 2, self.num_heads_kv, self.head_dim, dtype=dtype, device=device, | |
) | |
return kv_cache, conv_state | |
def _update_kv_cache(self, kv, inference_params): | |
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" | |
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" | |
return _update_kv_cache(kv, inference_params, self.layer_idx) | |
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params): | |
""" | |
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention. | |
q: (batch_size, seqlen_q, nheads, head_dim) | |
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim) | |
""" | |
assert inference_params is not None and inference_params.seqlen_offset > 0 | |
if self.rotary_emb_dim > 0: | |
self.rotary_emb._update_cos_sin_cache( | |
inference_params.max_seqlen, device=q.device, dtype=q.dtype | |
) | |
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached | |
else: | |
rotary_cos, rotary_sin = None, None | |
batch = q.shape[0] | |
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] | |
kv_cache = kv_cache[:batch] | |
cache_seqlens = ( | |
inference_params.lengths_per_sample[:batch] | |
if inference_params.lengths_per_sample is not None | |
else inference_params.seqlen_offset | |
) | |
assert flash_attn_with_kvcache is not None, "flash_attn must be installed" | |
context = flash_attn_with_kvcache( | |
q, | |
kv_cache[:, :, 0], | |
kv_cache[:, :, 1], | |
kv[:, :, 0], | |
kv[:, :, 1], | |
rotary_cos=rotary_cos, | |
rotary_sin=rotary_sin, | |
cache_seqlens=cache_seqlens, | |
softmax_scale=self.softmax_scale, | |
causal=self.causal, | |
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False, | |
) | |
return context | |
def _update_kvcache_attention(self, q, kv, inference_params): | |
"""Write kv to inference_params, then do attention""" | |
if ( | |
inference_params.seqlen_offset == 0 | |
or flash_attn_with_kvcache is None | |
): | |
# TODO: this only uses seqlen_offset and not lengths_per_sample. | |
kv = self._update_kv_cache(kv, inference_params) | |
k, v = kv.unbind(dim=-3) | |
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv) | |
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv) | |
return F.scaled_dot_product_attention( | |
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale | |
).transpose(1, 2) | |
else: | |
batch = q.shape[0] | |
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] | |
kv_cache = kv_cache[:batch] | |
cache_seqlens = ( | |
inference_params.lengths_per_sample[:batch] | |
if inference_params.lengths_per_sample is not None | |
else inference_params.seqlen_offset | |
) | |
return flash_attn_with_kvcache( | |
q, | |
kv_cache[:, :, 0], | |
kv_cache[:, :, 1], | |
kv[:, :, 0], | |
kv[:, :, 1], | |
cache_seqlens=cache_seqlens, | |
softmax_scale=self.softmax_scale, | |
causal=self.causal, | |
) | |
def forward(self, x, inference_params=None): | |
""" | |
Arguments: | |
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if | |
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total | |
is the is the sum of the sequence lengths in the batch. | |
inference_params: for generation. Adapted from Megatron-LM (and Apex) | |
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470 | |
""" | |
if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict: | |
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache( | |
x.shape[0], inference_params.max_seqlen, dtype=x.dtype | |
) | |
seqlen_offset = ( | |
0 | |
if inference_params is None | |
else ( | |
inference_params.lengths_per_sample | |
if inference_params.lengths_per_sample is not None | |
else inference_params.seqlen_offset | |
) | |
) | |
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None | |
qkv = self.in_proj(x) | |
if self.mlp_dim > 0: | |
qkv, x_mlp = qkv.split([qkv.shape[-1] - self.mlp_dim, self.mlp_dim], dim=-1) | |
x_mlp_up, x_mlp_gate = x_mlp.chunk(2, dim=-1) | |
x_mlp = x_mlp_up * F.silu(x_mlp_gate) | |
if self.d_conv > 0: | |
# The inference code for conv1d is pretty messy, should clean it up | |
if (inference_params is None or inference_params.seqlen_offset == 0): | |
if causal_conv1d_fn is None: | |
qkv = rearrange( | |
self.conv1d(rearrange(qkv, "b s d -> b d s"))[..., :-(self.d_conv - 1)], "b d s -> b s d" | |
).contiguous() | |
else: | |
qkv = causal_conv1d_fn( | |
qkv.transpose(1, 2), | |
rearrange(self.conv1d.weight, "d 1 w -> d w"), | |
self.conv1d.bias | |
).transpose(1, 2) | |
if inference_params is not None: | |
_, conv_state = inference_params.key_value_memory_dict[self.layer_idx] | |
# If we just take qkv[:, :, -self.d_conv :], it will error if seqlen < self.d_conv | |
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise. | |
qkv_t = rearrange(qkv, "b l d -> b d l") | |
conv_state.copy_(F.pad(qkv_t, (self.d_conv - qkv_t.shape[-1], 0))) # Update state (B D W) | |
else: | |
_, conv_state = inference_params.key_value_memory_dict[self.layer_idx] | |
assert qkv.shape[1] == 1, "Only support decoding with 1 token at a time for now" | |
qkv = qkv.squeeze(1) | |
# Conv step | |
if causal_conv1d_update is None: | |
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W) | |
conv_state[:, :, -1] = qkv | |
qkv = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D) | |
if self.conv1d.bias is not None: | |
qkv = qkv + self.conv1d.bias | |
else: | |
qkv = causal_conv1d_update( | |
qkv, | |
conv_state, | |
rearrange(self.conv1d.weight, "d 1 w -> d w"), | |
self.conv1d.bias | |
) | |
qkv = qkv.unsqueeze(1) | |
q, kv = qkv.split([self.num_heads * self.head_dim, self.num_heads_kv * 2 * self.head_dim], dim=-1) | |
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim) | |
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim) | |
if ( | |
inference_params is None | |
or inference_params.seqlen_offset == 0 | |
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) | |
): | |
if self.rotary_emb_dim > 0: | |
q, kv = self.rotary_emb( | |
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen | |
) | |
if inference_params is None: | |
k, v = kv.unbind(dim=-3) | |
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_heads_kv) | |
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_heads_kv) | |
context = F.scaled_dot_product_attention( | |
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=self.causal, scale=self.softmax_scale | |
).transpose(1, 2) | |
else: | |
context = self._update_kvcache_attention(q, kv, inference_params) | |
else: | |
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params) | |
context = rearrange(context, "... h d -> ... (h d)") | |
if self.mlp_dim > 0: | |
context = torch.cat([context, x_mlp], dim=-1) | |
out = self.out_proj(context) | |
return out | |