Spaces:
Running
Running
# coding=utf-8 | |
# Copyright 2023 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" RWKV configuration""" | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
RWKV6_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | |
class Rwkv6Config(PretrainedConfig): | |
""" | |
This is the configuration class to store the configuration of a [`Rwkv6Model`]. It is used to instantiate a RWKV6 | |
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | |
defaults will yield a similar configuration to that of the RWVK-4 | |
[RWKV/rwkv-5-world-1b5](https://huggingface.co/RWKV/rwkv-5-world-1b5) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 65536): | |
Vocabulary size of the RWKV6 model. Defines the number of different tokens that can be represented by the | |
`inputs_ids` passed when calling [`Rwkv6Model`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the embeddings and hidden states. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of hidden layers in the model. | |
attention_hidden_size (`int`, *optional*): | |
Dimensionality of the attention hidden states. Will default to `hidden_size` if unset. | |
num_attention_heads (`int`, *optional*, defaults to 64): | |
The attention heads to use in rwkv6 self_attention module. | |
head_size (`int`, *optional*, defaults to 64): head_size of rwkv6 self_attention module. | |
intermediate_size (`int`, *optional*): | |
Dimensionality of the inner feed-forward layers. Will default to 4 times `hidden_size` if unset. | |
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): | |
The epsilon to use in the layer normalization layers. | |
bos_token_id (`int`, *optional*, defaults to 0): | |
The id of the beginning of sentence token in the vocabulary. Defaults to 0. | |
eos_token_id (`int`, *optional*, defaults to 0): | |
The id of the end of sentence token in the vocabulary. Defaults to 0. | |
rescale_every (`int`, *optional*, defaults to 6): | |
At inference, the hidden states (and weights of the correponding output layers) are divided by 2 every | |
`rescale_every` layer. If set to 0 or a negative number, no rescale is done. | |
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether or not to tie the word embeddings with the input token embeddings. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last state. | |
Example: | |
```python | |
>>> from transformers import Rwkv6Config, Rwkv6Model | |
>>> # Initializing a Rwkv6 configuration | |
>>> configuration = Rwkv6Config() | |
>>> # Initializing a model (with random weights) from the configuration | |
>>> model = Rwkv6Model(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "rwkv6" | |
def __init__( | |
self, | |
vocab_size=65536, | |
hidden_size=768, | |
num_hidden_layers=24, | |
attention_hidden_size=None, | |
head_size=64, | |
head_size_divisor=8, | |
intermediate_size=None, | |
layer_norm_epsilon=1e-5, | |
bos_token_id=0, | |
eos_token_id=0, | |
rescale_every=6, | |
tie_word_embeddings=False, | |
use_cache=True, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.attention_hidden_size = attention_hidden_size if attention_hidden_size is not None else hidden_size | |
self.head_size = head_size | |
self.head_size_divisor = head_size_divisor | |
self.intermediate_size = None | |
self.layer_norm_epsilon = layer_norm_epsilon | |
self.rescale_every = rescale_every | |
self.use_cache = use_cache | |
self.bos_token_id = bos_token_id | |
self.eos_token_id = eos_token_id | |
super().__init__( | |
tie_word_embeddings=tie_word_embeddings, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs | |
) | |