File size: 13,064 Bytes
306b4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright (C) 2023, Tri Dao.

import math

import torch
import torch.nn.functional as F
import pytest

from einops import rearrange

from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, selective_scan_ref
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, mamba_inner_ref


# @pytest.mark.parametrize('wtype', [torch.float32, torch.complex64])
@pytest.mark.parametrize('wtype', [torch.float32])
# @pytest.mark.parametrize('itype', [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize('itype', [torch.float32])
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 372, 512, 784, 1024, 1134, 2048, 4096])
@pytest.mark.parametrize('seqlen', [128, 256, 512, 1024, 2048, 4096])
# @pytest.mark.parametrize('seqlen', [128])
# @pytest.mark.parametrize("return_last_state", [False, True])
@pytest.mark.parametrize("return_last_state", [True])
# @pytest.mark.parametrize('has_delta_bias', [False, True])
@pytest.mark.parametrize('has_delta_bias', [True])
# @pytest.mark.parametrize('delta_softplus', [False, True])
@pytest.mark.parametrize('delta_softplus', [True])
# @pytest.mark.parametrize('has_z', [False, True])
@pytest.mark.parametrize('has_z', [True])
# @pytest.mark.parametrize('has_D', [False, True])
@pytest.mark.parametrize('has_D', [True])
@pytest.mark.parametrize("varBC_groups", [1, 2])
# @pytest.mark.parametrize("varBC_groups", [1])
# @pytest.mark.parametrize("is_variable_C", [False, True])
@pytest.mark.parametrize("is_variable_C", [True])
# @pytest.mark.parametrize("is_variable_B", [False, True])
@pytest.mark.parametrize("is_variable_B", [True])
def test_selective_scan(is_variable_B, is_variable_C, varBC_groups, has_D, has_z, has_delta_bias,
                        delta_softplus, return_last_state, seqlen, itype, wtype):
    if varBC_groups > 1 and (not is_variable_B or not is_variable_C):
        pytest.skip()  # This config is not applicable
    device = 'cuda'
    rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 3e-2, 5e-2
    rtolw, atolw = (1e-3, 1e-3)
    if has_z:  # If we have z, the errors on the weights seem higher
        rtolw = max(rtolw, rtol)
        atolw = max(atolw, atol)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    dim = 4
    dstate = 8
    is_complex = wtype == torch.complex64
    A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype)).requires_grad_()
    if not is_variable_B:
        B_shape = (dim, dstate)
    elif varBC_groups == 1:
        B_shape = (batch_size, dstate, seqlen if not is_complex else seqlen * 2)
    else:
        B_shape = (batch_size, varBC_groups, dstate, seqlen if not is_complex else seqlen * 2)
    B = torch.randn(*B_shape, device=device, dtype=wtype if not is_variable_B else itype,
                    requires_grad=True)
    if not is_variable_C:
        C_shape = (dim, dstate)
    elif varBC_groups == 1:
        C_shape = (batch_size, dstate, seqlen if not is_complex else seqlen * 2)
    else:
        C_shape = (batch_size, varBC_groups, dstate, seqlen if not is_complex else seqlen * 2)
    C = torch.randn(*C_shape, device=device, dtype=wtype if not is_variable_C else itype,
                    requires_grad=True)
    if has_D:
        D = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
    else:
        D = None
    if has_z:
        z = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype, requires_grad=True)
    else:
        z = None
    if has_delta_bias:
        delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)).requires_grad_()
    else:
        delta_bias = None
    u = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype, requires_grad=True)
    delta = (0.5 * torch.rand(batch_size, dim, seqlen, device=device, dtype=itype)).requires_grad_()
    A_ref = A.detach().clone().requires_grad_()
    B_ref = B.detach().clone().requires_grad_()
    C_ref = C.detach().clone().requires_grad_()
    D_ref = D.detach().clone().requires_grad_() if D is not None else None
    z_ref = z.detach().clone().requires_grad_() if z is not None else None
    u_ref = u.detach().clone().requires_grad_()
    delta_ref = delta.detach().clone().requires_grad_()
    delta_bias_ref = delta_bias.detach().clone().requires_grad_() if delta_bias is not None else None
    out, *rest = selective_scan_fn(
        u, delta, A, B, C, D, z=z,
        delta_bias=delta_bias, delta_softplus=delta_softplus,
        return_last_state=return_last_state
    )
    if return_last_state:
        state = rest[0]
    out_ref, *rest = selective_scan_ref(
        u_ref, delta_ref, A_ref, B_ref, C_ref, D_ref, z=z_ref,
        delta_bias=delta_bias_ref, delta_softplus=delta_softplus,
        return_last_state=return_last_state
    )
    if return_last_state:
        state_ref = rest[0]
    # dA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
    # dt_u = delta * u

    print(f'Output max diff: {(out - out_ref).abs().max().item()}')
    print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
    assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
    if return_last_state:
        print(f'State max diff: {(state - state_ref).abs().max().item()}')
        assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)

    g = torch.randn_like(out)
    out_ref.backward(g)
    out.backward(g)

    print(f'du max diff: {(u.grad - u_ref.grad).abs().max().item()}')
    print(f'ddelta max diff: {(delta.grad - delta_ref.grad).abs().max().item()}')
    print(f'dA max diff: {(A.grad - A_ref.grad).abs().max().item()}')
    print(f'dB max diff: {(B.grad - B_ref.grad).abs().max().item()}')
    print(f'dC max diff: {(C.grad - C_ref.grad).abs().max().item()}')
    if has_D:
        print(f'dD max diff: {(D.grad - D_ref.grad).abs().max().item()}')
    if has_z:
        print(f'dz max diff: {(z.grad - z_ref.grad).abs().max().item()}')
    if has_delta_bias:
        print(f'ddelta_bias max diff: {(delta_bias.grad - delta_bias_ref.grad).abs().max().item()}')

    assert torch.allclose(u.grad, u_ref.grad.to(dtype=itype), rtol=rtol * 2, atol=atol * 2)
    assert torch.allclose(delta.grad, delta_ref.grad.to(dtype=itype), rtol=rtol * 5, atol=atol * 10)
    assert torch.allclose(A.grad, A_ref.grad, rtol=rtolw, atol=atolw * 5)
    assert torch.allclose(B.grad, B_ref.grad, rtol=rtolw if not is_variable_B else rtol,
                          atol=atolw if not is_variable_B else atol)
    assert torch.allclose(C.grad, C_ref.grad, rtol=rtolw if not is_variable_C else rtol,
                          atol=atolw if not is_variable_C else atol)
    if has_D:
        assert torch.allclose(D.grad, D_ref.grad, rtol=rtolw, atol=atolw)
    if has_z:
        assert torch.allclose(z.grad, z_ref.grad, rtol=rtolw, atol=atolw)
    if has_delta_bias:
        assert torch.allclose(delta_bias.grad, delta_bias_ref.grad, rtol=rtolw, atol=atolw)


@pytest.mark.parametrize('wtype', [torch.float32, torch.complex64])
# @pytest.mark.parametrize('wtype', [torch.complex64])
# @pytest.mark.parametrize('itype', [torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize('itype', [torch.float32])
# @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 372, 512, 784, 1024, 1134, 2048, 4096])
@pytest.mark.parametrize('seqlen', [128])
@pytest.mark.parametrize("is_variable_C", [False, True])
# @pytest.mark.parametrize("is_variable_C", [False])
@pytest.mark.parametrize("is_variable_B", [False, True])
# @pytest.mark.parametrize("is_variable_B", [True])
def test_mamba_inner_fn(is_variable_B, is_variable_C, seqlen, itype, wtype):
    device = 'cuda'
    rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
    if itype == torch.bfloat16:
        rtol, atol = 3e-2, 5e-2
    rtolw, atolw = (1e-3, 1e-3)
    # If we have z, the errors on the weights seem higher
    rtolw = max(rtolw, rtol)
    atolw = max(atolw, atol)
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    dim = 768
    dstate = 8
    dt_rank = 48
    is_complex = wtype == torch.complex64
    xz = torch.randn(batch_size, 2 * dim, seqlen, device=device, dtype=itype, requires_grad=True)
    conv1d_weight = torch.randn(dim, 1, 3, device=device, dtype=torch.float32, requires_grad=True)
    conv1d_bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
    x_proj_weight = torch.randn(dt_rank + (bool(is_variable_B) + bool(is_variable_C)) * dstate
                                * (1 if not is_complex else 2),
                                dim, device=device, dtype=itype, requires_grad=True)
    delta_proj_weight = torch.randn(dim, dt_rank, device=device, dtype=itype, requires_grad=True)
    out_proj_weight = torch.randn(dim // 2, dim, device=device, dtype=itype, requires_grad=True)
    out_proj_bias = None
    A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype)).requires_grad_()
    B = (torch.randn(dim, dstate, device=device, dtype=wtype, requires_grad=True)
         if not is_variable_B else None)
    C = (torch.randn(dim, dstate, device=device, dtype=wtype, requires_grad=True)
         if not is_variable_C else None)
    D = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
    delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)).requires_grad_()
    B_proj_bias = None
    C_proj_bias = None
    xz_ref = xz.detach().clone().requires_grad_()
    conv1d_weight_ref = conv1d_weight.detach().clone().requires_grad_()
    conv1d_bias_ref = conv1d_bias.detach().clone().requires_grad_()
    x_proj_weight_ref = x_proj_weight.detach().clone().requires_grad_()
    delta_proj_weight_ref = delta_proj_weight.detach().clone().requires_grad_()
    out_proj_weight_ref = out_proj_weight.detach().clone().requires_grad_()
    out_proj_bias_ref = (out_proj_bias.detach().clone().requires_grad_()
                         if out_proj_bias is not None else None)
    A_ref = A.detach().clone().requires_grad_()
    B_ref = B.detach().clone().requires_grad_() if B is not None else None
    C_ref = C.detach().clone().requires_grad_() if C is not None else None
    D_ref = D.detach().clone().requires_grad_()
    delta_bias_ref = delta_bias.detach().clone().requires_grad_() if delta_bias is not None else None
    out = mamba_inner_fn(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
                         out_proj_weight, out_proj_bias,
                         A, B, C, D, delta_bias=delta_bias, delta_softplus=True)
    out_ref = mamba_inner_ref(xz_ref, conv1d_weight_ref, conv1d_bias_ref, x_proj_weight_ref,
                              delta_proj_weight_ref, out_proj_weight_ref, out_proj_bias_ref,
                              A_ref, B_ref, C_ref, D_ref,
                              delta_bias=delta_bias_ref, delta_softplus=True)
    # dA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
    # dt_u = delta * u

    print(f'Output max diff: {(out - out_ref).abs().max().item()}')
    print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
    assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)

    g = torch.randn_like(out)
    out_ref.backward(g)
    out.backward(g)

    print(f'dxz max diff: {(xz.grad - xz_ref.grad).abs().max().item()}')
    print(f'dA max diff: {(A.grad - A_ref.grad).abs().max().item()}')
    if not is_variable_B:
        print(f'dB max diff: {(B.grad - B_ref.grad).abs().max().item()}')
    if not is_variable_C:
        print(f'dC max diff: {(C.grad - C_ref.grad).abs().max().item()}')
    print(f'dD max diff: {(D.grad - D_ref.grad).abs().max().item()}')
    print(f'ddelta_bias max diff: {(delta_bias.grad - delta_bias_ref.grad).abs().max().item()}')
    print(f'dout_proj_weight max diff: {(out_proj_weight.grad - out_proj_weight_ref.grad).abs().max().item()}')
    print(f'ddelta_proj_weight max diff: {(delta_proj_weight.grad - delta_proj_weight_ref.grad).abs().max().item()}')
    print(f'dx_proj_weight max diff: {(x_proj_weight.grad - x_proj_weight_ref.grad).abs().max().item()}')
    print(f'dconv1d_weight max diff: {(conv1d_weight.grad - conv1d_weight_ref.grad).abs().max().item()}')
    print(f'dconv1d_bias max diff: {(conv1d_bias.grad - conv1d_bias_ref.grad).abs().max().item()}')

    # assert torch.allclose(xz.grad, xz_ref.grad.to(dtype=itype), rtol=rtol * 2, atol=atol * 2)
    # assert torch.allclose(delta.grad, delta_ref.grad.to(dtype=itype), rtol=rtol * 5, atol=atol * 10)
    # assert torch.allclose(A.grad, A_ref.grad, rtol=rtolw, atol=atolw * 5)
    # assert torch.allclose(B.grad, B_ref.grad, rtol=rtolw if not is_variable_B else rtol,
    #                       atol=atolw if not is_variable_B else atol)
    # assert torch.allclose(C.grad, C_ref.grad, rtol=rtolw if not is_variable_C else rtol,
    #                       atol=atolw if not is_variable_C else atol)
    # assert torch.allclose(D.grad, D_ref.grad, rtol=rtolw, atol=atolw)
    # assert torch.allclose(delta_bias.grad, delta_bias_ref.grad, rtol=rtolw, atol=atolw)