File size: 7,608 Bytes
306b4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Copyright (c) 2024, Tri Dao, Albert Gu.

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange, repeat

try:
    from causal_conv1d import causal_conv1d_fn
except ImportError:
    causal_conv1d_fn = None

try:
    from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated, LayerNorm
except ImportError:
    RMSNormGated, LayerNorm = None, None

from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined


class Mamba2Simple(nn.Module):
    def __init__(
        self,
        d_model,
        d_state=64,
        d_conv=4,
        conv_init=None,
        expand=2,
        headdim=128,
        ngroups=1,
        A_init_range=(1, 16),
        dt_min=0.001,
        dt_max=0.1,
        dt_init_floor=1e-4,
        dt_limit=(0.0, float("inf")),
        learnable_init_states=False,
        activation="swish",
        bias=False,
        conv_bias=True,
        # Fused kernel and sharding options
        chunk_size=256,
        use_mem_eff_path=True,
        layer_idx=None,  # Absorb kwarg for general module
        device=None,
        dtype=None,
    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.d_model = d_model
        self.d_state = d_state
        self.d_conv = d_conv
        self.conv_init = conv_init
        self.expand = expand
        self.d_inner = self.expand * self.d_model
        self.headdim = headdim
        self.ngroups = ngroups
        assert self.d_inner % self.headdim == 0
        self.nheads = self.d_inner // self.headdim
        self.dt_limit = dt_limit
        self.learnable_init_states = learnable_init_states
        self.activation = activation
        self.chunk_size = chunk_size
        self.use_mem_eff_path = use_mem_eff_path
        self.layer_idx = layer_idx

        # Order: [z, x, B, C, dt]
        d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
        self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)

        conv_dim = self.d_inner + 2 * self.ngroups * self.d_state
        self.conv1d = nn.Conv1d(
            in_channels=conv_dim,
            out_channels=conv_dim,
            bias=conv_bias,
            kernel_size=d_conv,
            groups=conv_dim,
            padding=d_conv - 1,
            **factory_kwargs,
        )
        if self.conv_init is not None:
            nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)
        # self.conv1d.weight._no_weight_decay = True

        if self.learnable_init_states:
            self.init_states = nn.Parameter(torch.zeros(self.nheads, self.headdim, self.d_state, **factory_kwargs))
            self.init_states._no_weight_decay = True

        self.act = nn.SiLU()

        # Initialize log dt bias
        dt = torch.exp(
            torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
            + math.log(dt_min)
        )
        dt = torch.clamp(dt, min=dt_init_floor)
        # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
        inv_dt = dt + torch.log(-torch.expm1(-dt))
        self.dt_bias = nn.Parameter(inv_dt)
        # Just to be explicit. Without this we already don't put wd on dt_bias because of the check
        # name.endswith("bias") in param_grouping.py
        self.dt_bias._no_weight_decay = True

        # A parameter
        assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
        A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
        A_log = torch.log(A).to(dtype=dtype)
        self.A_log = nn.Parameter(A_log)
        # self.register_buffer("A_log", torch.zeros(self.nheads, dtype=torch.float32, device=device), persistent=True)
        self.A_log._no_weight_decay = True

        # D "skip" parameter
        self.D = nn.Parameter(torch.ones(self.nheads, device=device))
        self.D._no_weight_decay = True

        # Extra normalization layer right before output projection
        assert RMSNormGated is not None
        self.norm = RMSNormGated(self.d_inner, eps=1e-5, norm_before_gate=False, **factory_kwargs)

        self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)

    def forward(self, u, seq_idx=None):
        """
        u: (B, L, D)
        Returns: same shape as u
        """
        batch, seqlen, dim = u.shape

        zxbcdt = self.in_proj(u)  # (B, L, d_in_proj)
        A = -torch.exp(self.A_log)  # (nheads) or (d_inner, d_state)
        initial_states=repeat(self.init_states, "... -> b ...", b=batch) if self.learnable_init_states else None
        dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)

        if self.use_mem_eff_path:
            # Fully fused path
            out = mamba_split_conv1d_scan_combined(
                zxbcdt,
                rearrange(self.conv1d.weight, "d 1 w -> d w"),
                self.conv1d.bias,
                self.dt_bias,
                A,
                D=self.D,
                chunk_size=self.chunk_size,
                seq_idx=seq_idx,
                activation=self.activation,
                rmsnorm_weight=self.norm.weight,
                rmsnorm_eps=self.norm.eps,
                outproj_weight=self.out_proj.weight,
                outproj_bias=self.out_proj.bias,
                headdim=self.headdim,
                ngroups=self.ngroups,
                norm_before_gate=False,
                initial_states=initial_states,
                **dt_limit_kwargs,
            )
        else:
            z, xBC, dt = torch.split(
                zxbcdt, [self.d_inner, self.d_inner + 2 * self.ngroups * self.d_state, self.nheads], dim=-1
            )
            dt = F.softplus(dt + self.dt_bias)  # (B, L, nheads)
            assert self.activation in ["silu", "swish"]

            # 1D Convolution
            if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
                xBC = self.act(
                    self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)
                )  # (B, L, self.d_inner + 2 * ngroups * d_state)
                xBC = xBC[:, :seqlen, :]
            else:
                xBC = causal_conv1d_fn(
                    x=xBC.transpose(1, 2),
                    weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
                    bias=self.conv1d.bias,
                    activation=self.activation,
                ).transpose(1, 2)

            # Split into 3 main branches: X, B, C
            # These correspond to V, K, Q respectively in the SSM/attention duality
            x, B, C = torch.split(xBC, [self.d_inner, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
            y = mamba_chunk_scan_combined(
                rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
                dt,
                A,
                rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
                rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
                chunk_size=self.chunk_size,
                D=self.D,
                z=None,
                seq_idx=seq_idx,
                initial_states=initial_states,
                **dt_limit_kwargs,
            )
            y = rearrange(y, "b l h p -> b l (h p)")

            # Multiply "gate" branch and apply extra normalization layer
            y = self.norm(y, z)
            out = self.out_proj(y)
        return out