File size: 34,955 Bytes
306b4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h>  // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <ATen/cuda/Atomic.cuh>  // For atomicAdd on complex

#ifndef USE_ROCM
    #include <cub/block/block_load.cuh>
    #include <cub/block/block_store.cuh>
    #include <cub/block/block_scan.cuh>
    #include <cub/block/block_reduce.cuh>
#else
    #include <hipcub/hipcub.hpp>
    namespace cub = hipcub;
#endif

#include "selective_scan.h"
#include "selective_scan_common.h"
#include "reverse_scan.cuh"
#include "static_switch.h"

template<typename scalar_t> __device__ __forceinline__ scalar_t conj(scalar_t x);
template<> __device__ __forceinline__ float conj<float>(float x) { return x; }
template<> __device__ __forceinline__ complex_t conj<complex_t>(complex_t x) { return std::conj(x); }

template<int kNThreads_, int kNItems_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
         bool kDeltaSoftplus_, bool kHasZ_, typename input_t_, typename weight_t_>
struct Selective_Scan_bwd_kernel_traits {
    static_assert(kNItems_ % 4 == 0);
    using input_t = input_t_;
    using weight_t = weight_t_;
    static constexpr int kNThreads = kNThreads_;
    static constexpr int kNItems = kNItems_;
    static constexpr int kNBytes = sizeof(input_t);
    static_assert(kNBytes == 2 || kNBytes == 4);
    static constexpr int kNElts = kNBytes == 4 ? 4 : constexpr_min(8, kNItems);
    static_assert(kNItems % kNElts == 0);
    static constexpr int kNLoads = kNItems / kNElts;
    static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
    static constexpr bool kIsEvenLen = kIsEvenLen_;
    static constexpr bool kIsVariableB = kIsVariableB_;
    static constexpr bool kIsVariableC = kIsVariableC_;
    static constexpr bool kDeltaSoftplus = kDeltaSoftplus_;
    static constexpr bool kHasZ = kHasZ_;
    // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads with float improves occupancy.
    // For complex this would lead to massive register spilling, so we keep it at 2.
    static constexpr int kMinBlocks = kNThreads == 128 && !kIsComplex ? 3 : 2;
    using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
    using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
    using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
    using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
    using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, cub::BLOCK_STORE_WARP_TRANSPOSE>;
    // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
    using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
    // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
    using BlockReverseScanT = BlockReverseScan<scan_t, kNThreads>;
    using BlockReduceT = cub::BlockReduce<scan_t, kNThreads>;
    using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
    using BlockReduceComplexT = cub::BlockReduce<complex_t, kNThreads>;
    using BlockExchangeT = cub::BlockExchange<float, kNThreads, !kIsComplex ? kNItems : kNItems * 2>;

    static constexpr int kSmemIOSize = custom_max({sizeof(typename BlockLoadT::TempStorage),
                                                    sizeof(typename BlockLoadVecT::TempStorage),
                                                    (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
                                                    (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
                                                    sizeof(typename BlockStoreT::TempStorage),
                                                    sizeof(typename BlockStoreVecT::TempStorage)});
    static constexpr int kSmemExchangeSize = (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockExchangeT::TempStorage);
    static constexpr int kSmemReduceSize = sizeof(typename BlockReduceT::TempStorage);
    static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize + kSmemReduceSize + sizeof(typename BlockScanT::TempStorage) + sizeof(typename BlockReverseScanT::TempStorage);
};

template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
void selective_scan_bwd_kernel(SSMParamsBwd params) {
    constexpr bool kIsComplex = Ktraits::kIsComplex;
    constexpr bool kIsVariableB = Ktraits::kIsVariableB;
    constexpr bool kIsVariableC = Ktraits::kIsVariableC;
    constexpr bool kDeltaSoftplus = Ktraits::kDeltaSoftplus;
    constexpr bool kHasZ = Ktraits::kHasZ;
    constexpr int kNThreads = Ktraits::kNThreads;
    constexpr int kNItems = Ktraits::kNItems;
    using input_t = typename Ktraits::input_t;
    using weight_t = typename Ktraits::weight_t;
    using scan_t = typename Ktraits::scan_t;

    // Shared memory.
    extern __shared__ char smem_[];
    // cast to lvalue reference of expected type
    // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
    // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
    // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
    auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
    auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
    auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
    auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
    auto& smem_exchange = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
    auto& smem_exchange1 = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize + sizeof(typename Ktraits::BlockExchangeT::TempStorage));
    auto& smem_reduce = *reinterpret_cast<typename Ktraits::BlockReduceT::TempStorage*>(reinterpret_cast<char *>(&smem_exchange) + Ktraits::kSmemExchangeSize);
    auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(&smem_reduce);
    auto& smem_reduce_complex = *reinterpret_cast<typename Ktraits::BlockReduceComplexT::TempStorage*>(&smem_reduce);
    auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(reinterpret_cast<char *>(&smem_reduce) + Ktraits::kSmemReduceSize);
    auto& smem_reverse_scan = *reinterpret_cast<typename Ktraits::BlockReverseScanT::TempStorage*>(reinterpret_cast<char *>(&smem_scan) + sizeof(typename Ktraits::BlockScanT::TempStorage));
    weight_t *smem_delta_a = reinterpret_cast<weight_t *>(smem_ + Ktraits::kSmemSize);
    scan_t *smem_running_postfix = reinterpret_cast<scan_t *>(smem_delta_a + 2 * MAX_DSTATE + kNThreads);
    weight_t *smem_da = reinterpret_cast<weight_t *>(smem_running_postfix + MAX_DSTATE);
    weight_t *smem_dbc = reinterpret_cast<weight_t *>(smem_da + MAX_DSTATE);

    const int batch_id = blockIdx.x;
    const int dim_id = blockIdx.y;
    const int group_id = dim_id / (params.dim_ngroups_ratio);
    input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
        + dim_id * params.u_d_stride;
    input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
        + dim_id * params.delta_d_stride;
    input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
        + dim_id * params.dout_d_stride;
    weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * params.A_d_stride;
    weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * params.B_d_stride;
    input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
    weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * params.C_d_stride;
    input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
    weight_t *dA = reinterpret_cast<weight_t *>(params.dA_ptr) + dim_id * params.dA_d_stride;
    weight_t *dB = reinterpret_cast<weight_t *>(params.dB_ptr)
        + (!kIsVariableB ? dim_id * params.dB_d_stride : batch_id * (!kIsComplex ? params.dB_batch_stride : params.dB_batch_stride / 2) + group_id * params.dB_group_stride);
    weight_t *dC = reinterpret_cast<weight_t *>(params.dC_ptr)
        + (!kIsVariableC ? dim_id * params.dC_d_stride : batch_id * (!kIsComplex ? params.dC_batch_stride : params.dC_batch_stride / 2) + group_id * params.dC_group_stride);
    float *dD = params.dD_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.dD_ptr) + dim_id;
    float D_val = params.D_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.D_ptr)[dim_id];
    float *ddelta_bias = params.ddelta_bias_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.ddelta_bias_ptr) + dim_id;
    float delta_bias = params.delta_bias_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id];
    scan_t *x = params.x_ptr == nullptr
        ? nullptr
        : reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id) * (params.n_chunks) * params.dstate;
    float dD_val = 0;
    float ddelta_bias_val = 0;

    constexpr int kChunkSize = kNThreads * kNItems;
    u += (params.n_chunks - 1) * kChunkSize;
    delta += (params.n_chunks - 1) * kChunkSize;
    dout += (params.n_chunks - 1) * kChunkSize;
    Bvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
    Cvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
    for (int chunk = params.n_chunks - 1; chunk >= 0; --chunk) {
        input_t u_vals[kNItems];
        input_t delta_vals_load[kNItems];
        input_t dout_vals_load[kNItems];
        __syncthreads();
        load_input<Ktraits>(u, u_vals, smem_load, params.seqlen - chunk * kChunkSize);
        u -= kChunkSize;
        __syncthreads();
        load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
        // Will reload delta at the same location if kDeltaSoftplus
        if constexpr (!kDeltaSoftplus) { delta -= kChunkSize; }
        __syncthreads();
        load_input<Ktraits>(dout, dout_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
        dout -= kChunkSize;

        float dout_vals[kNItems], delta_vals[kNItems];
        #pragma unroll
        for (int i = 0; i < kNItems; ++i) {
            dout_vals[i] = float(dout_vals_load[i]);
            delta_vals[i] = float(delta_vals_load[i]) + delta_bias;
            if constexpr (kDeltaSoftplus) {
                delta_vals[i] = delta_vals[i] <= 20.f ? log1pf(expf(delta_vals[i])) : delta_vals[i];
            }
        }

        if constexpr (kHasZ) {
            input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
                + dim_id * params.z_d_stride + chunk * kChunkSize;
            input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
                + dim_id * params.out_d_stride + chunk * kChunkSize;
            input_t *dz = reinterpret_cast<input_t *>(params.dz_ptr) + batch_id * params.dz_batch_stride
                + dim_id * params.dz_d_stride + chunk * kChunkSize;
            input_t z_vals[kNItems], out_vals[kNItems];
            __syncthreads();
            load_input<Ktraits>(z, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
            __syncthreads();
            load_input<Ktraits>(out, out_vals, smem_load, params.seqlen - chunk * kChunkSize);
            float dz_vals[kNItems], z_silu_vals[kNItems];
            #pragma unroll
            for (int i = 0; i < kNItems; ++i) {
                float z_val = z_vals[i];
                float z_sigmoid_val = 1.0f / (1.0f + expf(-z_val));
                z_silu_vals[i] = z_val * z_sigmoid_val;
                dz_vals[i] = dout_vals[i] * float(out_vals[i]) * z_sigmoid_val
                             * (1.0f + z_val * (1.0f - z_sigmoid_val));
                dout_vals[i] *= z_silu_vals[i];
            }
            __syncthreads();
            store_output<Ktraits>(dz, dz_vals, smem_store, params.seqlen - chunk * kChunkSize);
            if (params.out_z_ptr != nullptr) {  // Recompute and store out_z
                float out_z_vals[kNItems];
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) { out_z_vals[i] = float(out_vals[i]) * z_silu_vals[i]; }
                // if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
                    // printf("out_val=%f, z_silu_val = %f, out_z_val = %f\n", float(out_vals[0]), z_silu_vals[0], out_z_vals[0]);
                // }
                input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
                    + dim_id * params.out_z_d_stride + chunk * kChunkSize;
                __syncthreads();
                store_output<Ktraits>(out_z, out_z_vals, smem_store, params.seqlen - chunk * kChunkSize);
            }
        }

        float du_vals[kNItems];
        #pragma unroll
        for (int i = 0; i < kNItems; ++i) { du_vals[i] = D_val * dout_vals[i]; }
        #pragma unroll
        for (int i = 0; i < kNItems; ++i) { dD_val += dout_vals[i] * float(u_vals[i]); }

        float ddelta_vals[kNItems] = {0};
        __syncthreads();
        for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
            const weight_t A_val = A[state_idx * params.A_dstate_stride];
            // Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
            weight_t A_scaled;
            constexpr float kLog2e = M_LOG2E;
            if constexpr (!kIsComplex) {
                A_scaled = A_val * kLog2e;
            } else {
                A_scaled = complex_t(A_val.real_ * kLog2e, A_val.imag_);
            }
            weight_t B_val, C_val;
            weight_t B_vals[kNItems], C_vals[kNItems];
            if constexpr (!kIsVariableB) {
                B_val = B[state_idx * params.B_dstate_stride];
            } else {
                load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
                    smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
            }
            if constexpr (!kIsVariableC) {
                C_val = C[state_idx * params.C_dstate_stride];
            } else {
                auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
                load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
                    smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
            }
            // const weight_t A_val = smem_a[state_idx];
            scan_t thread_data[kNItems], thread_reverse_data[kNItems];
            if constexpr (!kIsComplex) {
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    const float delta_a_exp = exp2f(delta_vals[i] * A_scaled);
                    thread_data[i] = make_float2(delta_a_exp, !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
                    if (i == 0) {
                        smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
                    } else {
                        thread_reverse_data[i - 1].x = delta_a_exp;
                    }
                    thread_reverse_data[i].y = dout_vals[i] *
                        (!kIsVariableC
                         ? (!kIsVariableB ? B_val * C_val : C_val)
                         : (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
                }
                __syncthreads();
                thread_reverse_data[kNItems - 1].x = threadIdx.x == kNThreads - 1
                    ? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
                    : smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
                // Initialize running total
                scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float2(1.f, 0.f);
                SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
                typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
                    thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
                );
                scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float2(1.f, 0.f);
                SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
                typename Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
                    thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
                );
                if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
                weight_t dA_val = 0, dBC_val = 0;
                weight_t dB_vals[kNItems], dC_vals[kNItems];
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    const float dx = thread_reverse_data[i].y;
                    const float ddelta_u = !kIsVariableB ? dx : dx * B_vals[i];
                    du_vals[i] += ddelta_u * delta_vals[i];
                    const float a = thread_data[i].y - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
                    ddelta_vals[i] += ddelta_u * float(u_vals[i]) + dx * A_val * a;
                    dA_val += dx * delta_vals[i] * a;
                    if constexpr (!kIsVariableB || !kIsVariableC) {
                        if constexpr (!kIsVariableB) {  // dBC_val is dB_val
                            dBC_val += dout_vals[i] * (!kIsVariableC ? thread_data[i].y : thread_data[i].y * C_vals[i]);
                        } else {  // dBC_val is dC_val
                            dBC_val += dout_vals[i] * thread_data[i].y;
                        }
                    }
                    if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
                    if constexpr (kIsVariableC) {
                        dC_vals[i] = dout_vals[i] * (!kIsVariableB ? thread_data[i].y * B_val : thread_data[i].y);
                    }
                }
                // Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
                if constexpr (kIsVariableB || kIsVariableC) {
                    if constexpr (kIsVariableB) {
                        typename Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals, dB_vals);
                    }
                    if constexpr (kIsVariableC) {
                        auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
                        typename Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals, dC_vals);
                    }
                    const int seqlen_remaining = params.seqlen - chunk * kChunkSize - threadIdx.x;
                    weight_t *dB_cur = dB + state_idx * params.dB_dstate_stride + chunk * kChunkSize + threadIdx.x;
                    weight_t *dC_cur = dC + state_idx * params.dC_dstate_stride + chunk * kChunkSize + threadIdx.x;
                    #pragma unroll
                    for (int i = 0; i < kNItems; ++i) {
                        if (i * kNThreads < seqlen_remaining) {
                            if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals[i]); }
                            if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals[i]); }
                        }
                    }
                }
                if constexpr (!kIsVariableB || !kIsVariableC) {
                    float2 dA_dBC_val = make_float2(dA_val, dBC_val);
                    dA_dBC_val = typename Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
                    dA_val = dA_dBC_val.x;
                    if (threadIdx.x == 0) {
                        smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dA_dBC_val.y : dA_dBC_val.y + smem_dbc[state_idx];
                    }
                } else {
                    dA_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dA_val);
                }
                if (threadIdx.x == 0) {
                    smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
                }
            } else {
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    // Pytorch's implementation of complex exp (which calls thrust) is very slow
                    complex_t delta_a_exp = cexp2f(delta_vals[i] * A_scaled);
                    weight_t B_delta_u_val = !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : B_vals[i] * delta_vals[i] * float(u_vals[i]);
                    thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
                    if (i == 0) {
                        smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
                    } else {
                        thread_reverse_data[i - 1].x = delta_a_exp.real_;
                        thread_reverse_data[i - 1].y = -delta_a_exp.imag_;
                    }
                    complex_t dout_BC = 2 * dout_vals[i]
                        * conj(!kIsVariableC
                                ? (!kIsVariableB ? B_val * C_val : C_val)
                                : (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
                    thread_reverse_data[i].z = dout_BC.real_;
                    thread_reverse_data[i].w = dout_BC.imag_;
                }
                __syncthreads();
                complex_t delta_a_exp = threadIdx.x == kNThreads - 1
                    ? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
                    : smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
                thread_reverse_data[kNItems - 1].x = delta_a_exp.real_;
                thread_reverse_data[kNItems - 1].y = -delta_a_exp.imag_;
                // Initialize running total
                scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
                SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
                typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
                    thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
                );
                scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
                SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
                typename Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
                    thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
                );
                if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
                weight_t dA_val = 0, dBC_val = 0;
                weight_t dB_vals[kNItems], dC_vals[kNItems];
                #pragma unroll
                for (int i = 0; i < kNItems; ++i) {
                    complex_t x = complex_t(thread_data[i].z, thread_data[i].w);
                    complex_t dx = complex_t(thread_reverse_data[i].z, thread_reverse_data[i].w);
                    float ddelta_u = !kIsVariableB ? dx.real_ : (dx * conj(B_vals[i])).real_;
                    if constexpr (!kIsVariableB || !kIsVariableC) {
                        if constexpr (!kIsVariableB) {  // dBC_val is dB_val
                            dBC_val += (2 * dout_vals[i]) * conj(!kIsVariableC ? x : x * C_vals[i]);
                        } else {  // dBC_val is dC_val
                            dBC_val += (2 * dout_vals[i]) * conj(x);
                        }
                    }
                    const complex_t a_conj = conj(x - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]));
                    du_vals[i] += ddelta_u * delta_vals[i];
                    ddelta_vals[i] += ddelta_u * float(u_vals[i]) + (dx * conj(A_val) * a_conj).real_;
                    dA_val += delta_vals[i] * dx * a_conj;
                    if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
                    if constexpr (kIsVariableC) {
                        dC_vals[i] = (2 * dout_vals[i]) * conj(!kIsVariableB ? x * B_val : x);
                    }
                }
                // Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
                if constexpr (kIsVariableB || kIsVariableC) {
                    float dB_vals_f[kNItems * 2], dC_vals_f[kNItems * 2];
                    if constexpr (kIsVariableB) {
                        #pragma unroll
                        for (int i = 0; i < kNItems; ++i) {
                            dB_vals_f[i * 2] = dB_vals[i].real_;
                            dB_vals_f[i * 2 + 1] = dB_vals[i].imag_;
                        }
                        typename Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals_f, dB_vals_f);
                    }
                    if constexpr (kIsVariableC) {
                        #pragma unroll
                        for (int i = 0; i < kNItems; ++i) {
                            dC_vals_f[i * 2] = dC_vals[i].real_;
                            dC_vals_f[i * 2 + 1] = dC_vals[i].imag_;
                        }
                        auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
                        typename Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals_f, dC_vals_f);
                    }
                    const int seqlen_remaining = (params.seqlen - chunk * kChunkSize) * 2 - threadIdx.x;
                    float *dB_cur = reinterpret_cast<float *>(dB) + state_idx * params.dB_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
                    float *dC_cur = reinterpret_cast<float *>(dC) + state_idx * params.dC_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
                    #pragma unroll
                    for (int i = 0; i < kNItems * 2; ++i) {
                        if (i * kNThreads < seqlen_remaining) {
                            if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals_f[i]); }
                            if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals_f[i]); }
                        }
                    }
                }
                if constexpr (!kIsVariableB || !kIsVariableC) {
                    float4 dA_dBC_val = make_float4(dA_val.real_, dA_val.imag_, dBC_val.real_, dBC_val.imag_);
                    dA_dBC_val = typename Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
                    dA_val = complex_t(dA_dBC_val.x, dA_dBC_val.y);
                    dBC_val = complex_t(dA_dBC_val.z, dA_dBC_val.w);
                    if (threadIdx.x == 0) {
                        smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dBC_val : dBC_val + smem_dbc[state_idx];
                    }
                } else {
                    dA_val = typename Ktraits::BlockReduceComplexT(smem_reduce_complex).Sum(dA_val);
                }
                if (threadIdx.x == 0) {
                    smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
                }
            }
        }

        if constexpr (kDeltaSoftplus) {
            __syncthreads();
            input_t delta_vals_load[kNItems];
            load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
            delta -= kChunkSize;
            #pragma unroll
            for (int i = 0; i < kNItems; ++i) {
                float delta_val = float(delta_vals_load[i]) + delta_bias;
                float delta_val_neg_exp = expf(-delta_val);
                ddelta_vals[i] = delta_val <= 20.f
                    ? ddelta_vals[i] / (1.f + delta_val_neg_exp)
                    : ddelta_vals[i];
            }
        }
        for (int i = 0; i < kNItems; ++i) { ddelta_bias_val += ddelta_vals[i]; }

        input_t *du = reinterpret_cast<input_t *>(params.du_ptr) + batch_id * params.du_batch_stride
            + dim_id * params.du_d_stride + chunk * kChunkSize;
        input_t *ddelta = reinterpret_cast<input_t *>(params.ddelta_ptr) + batch_id * params.ddelta_batch_stride
            + dim_id * params.ddelta_d_stride + chunk * kChunkSize;
        __syncthreads();
        store_output<Ktraits>(du, du_vals, smem_store, params.seqlen - chunk * kChunkSize);
        __syncthreads();
        store_output<Ktraits>(ddelta, ddelta_vals, smem_store, params.seqlen - chunk * kChunkSize);

        Bvar -= kChunkSize * (!kIsComplex ? 1 : 2);
        Cvar -= kChunkSize * (!kIsComplex ? 1 : 2);
    }
    if (params.dD_ptr != nullptr) {
        dD_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dD_val);
        if (threadIdx.x == 0) { gpuAtomicAdd(dD, dD_val); }
    }
    if (params.ddelta_bias_ptr != nullptr) {
        __syncthreads();
        ddelta_bias_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(ddelta_bias_val);
        if (threadIdx.x == 0) { gpuAtomicAdd(ddelta_bias, ddelta_bias_val); }
    }
    for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
        gpuAtomicAdd(&(dA[state_idx * params.dA_dstate_stride]), smem_da[state_idx]);
        weight_t dBC_val;
        if (!kIsVariableB || !kIsVariableC) { dBC_val = smem_dbc[state_idx]; }
        if constexpr (!kIsVariableB) {
            gpuAtomicAdd(&(dB[state_idx * params.dB_dstate_stride]),
                         !kIsVariableC ? dBC_val * conj(C[state_idx * params.C_dstate_stride]) : dBC_val);
        }
        if constexpr (!kIsVariableC) {
            gpuAtomicAdd(&(dC[state_idx * params.dC_dstate_stride]),
                        !kIsVariableB ? dBC_val * conj(B[state_idx * params.B_dstate_stride]) : dBC_val);
        }
    }
}

template<int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_bwd_launch(SSMParamsBwd &params, cudaStream_t stream) {
    BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
        BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
            BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
                BOOL_SWITCH(params.delta_softplus, kDeltaSoftplus, [&] {
                    BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
                        using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, kIsEvenLen, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
                        // using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, true, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
                        // TODO: check this
                        constexpr int kSmemSize = Ktraits::kSmemSize + MAX_DSTATE * sizeof(typename Ktraits::scan_t) + (kNThreads + 4 * MAX_DSTATE) * sizeof(typename Ktraits::weight_t);

                        dim3 grid(params.batch, params.dim);
                        
                        auto kernel = &selective_scan_bwd_kernel<Ktraits>;

                        if (kSmemSize >= 48 * 1024) {

                            #ifndef USE_ROCM
                            C10_CUDA_CHECK(cudaFuncSetAttribute(
                                kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
                            #else
                            C10_CUDA_CHECK(cudaFuncSetAttribute(
                                (void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
                            std::cerr << "Warning (selective_scan_bwd_kernel): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
                            #endif

                        }

                        kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
                        C10_CUDA_KERNEL_LAUNCH_CHECK();
                    });
                });
            });
        });
    });
}

template<typename input_t, typename weight_t>
void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream) {

    #ifndef USE_ROCM
        if (params.seqlen <= 128) {
            selective_scan_bwd_launch<32, 4, input_t, weight_t>(params, stream);
        } else if (params.seqlen <= 256) {
            selective_scan_bwd_launch<32, 8, input_t, weight_t>(params, stream);
        } else if (params.seqlen <= 512) {
            selective_scan_bwd_launch<32, 16, input_t, weight_t>(params, stream);
        } else if (params.seqlen <= 1024) {
            selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
        } else {
            selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
        }
    #else 
        if (params.seqlen <= 256) {
            selective_scan_bwd_launch<64, 4, input_t, weight_t>(params, stream);
        } else if (params.seqlen <= 512) {
            selective_scan_bwd_launch<64, 8, input_t, weight_t>(params, stream);
        } else if (params.seqlen <= 1024) {
            selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
        } else {
            selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
        }
    #endif
}