Spaces:
Running
Running
File size: 34,955 Bytes
306b4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#pragma once
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include <ATen/cuda/Atomic.cuh> // For atomicAdd on complex
#ifndef USE_ROCM
#include <cub/block/block_load.cuh>
#include <cub/block/block_store.cuh>
#include <cub/block/block_scan.cuh>
#include <cub/block/block_reduce.cuh>
#else
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
#include "selective_scan.h"
#include "selective_scan_common.h"
#include "reverse_scan.cuh"
#include "static_switch.h"
template<typename scalar_t> __device__ __forceinline__ scalar_t conj(scalar_t x);
template<> __device__ __forceinline__ float conj<float>(float x) { return x; }
template<> __device__ __forceinline__ complex_t conj<complex_t>(complex_t x) { return std::conj(x); }
template<int kNThreads_, int kNItems_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
bool kDeltaSoftplus_, bool kHasZ_, typename input_t_, typename weight_t_>
struct Selective_Scan_bwd_kernel_traits {
static_assert(kNItems_ % 4 == 0);
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kNItems = kNItems_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
static constexpr int kNElts = kNBytes == 4 ? 4 : constexpr_min(8, kNItems);
static_assert(kNItems % kNElts == 0);
static constexpr int kNLoads = kNItems / kNElts;
static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
static constexpr bool kIsEvenLen = kIsEvenLen_;
static constexpr bool kIsVariableB = kIsVariableB_;
static constexpr bool kIsVariableC = kIsVariableC_;
static constexpr bool kDeltaSoftplus = kDeltaSoftplus_;
static constexpr bool kHasZ = kHasZ_;
// Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads with float improves occupancy.
// For complex this would lead to massive register spilling, so we keep it at 2.
static constexpr int kMinBlocks = kNThreads == 128 && !kIsComplex ? 3 : 2;
using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, cub::BLOCK_STORE_WARP_TRANSPOSE>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
// using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
using BlockReverseScanT = BlockReverseScan<scan_t, kNThreads>;
using BlockReduceT = cub::BlockReduce<scan_t, kNThreads>;
using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
using BlockReduceComplexT = cub::BlockReduce<complex_t, kNThreads>;
using BlockExchangeT = cub::BlockExchange<float, kNThreads, !kIsComplex ? kNItems : kNItems * 2>;
static constexpr int kSmemIOSize = custom_max({sizeof(typename BlockLoadT::TempStorage),
sizeof(typename BlockLoadVecT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
(int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
sizeof(typename BlockStoreT::TempStorage),
sizeof(typename BlockStoreVecT::TempStorage)});
static constexpr int kSmemExchangeSize = (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockExchangeT::TempStorage);
static constexpr int kSmemReduceSize = sizeof(typename BlockReduceT::TempStorage);
static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize + kSmemReduceSize + sizeof(typename BlockScanT::TempStorage) + sizeof(typename BlockReverseScanT::TempStorage);
};
template<typename Ktraits>
__global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
void selective_scan_bwd_kernel(SSMParamsBwd params) {
constexpr bool kIsComplex = Ktraits::kIsComplex;
constexpr bool kIsVariableB = Ktraits::kIsVariableB;
constexpr bool kIsVariableC = Ktraits::kIsVariableC;
constexpr bool kDeltaSoftplus = Ktraits::kDeltaSoftplus;
constexpr bool kHasZ = Ktraits::kHasZ;
constexpr int kNThreads = Ktraits::kNThreads;
constexpr int kNItems = Ktraits::kNItems;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
using scan_t = typename Ktraits::scan_t;
// Shared memory.
extern __shared__ char smem_[];
// cast to lvalue reference of expected type
// char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
// auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
auto& smem_exchange = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
auto& smem_exchange1 = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize + sizeof(typename Ktraits::BlockExchangeT::TempStorage));
auto& smem_reduce = *reinterpret_cast<typename Ktraits::BlockReduceT::TempStorage*>(reinterpret_cast<char *>(&smem_exchange) + Ktraits::kSmemExchangeSize);
auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(&smem_reduce);
auto& smem_reduce_complex = *reinterpret_cast<typename Ktraits::BlockReduceComplexT::TempStorage*>(&smem_reduce);
auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(reinterpret_cast<char *>(&smem_reduce) + Ktraits::kSmemReduceSize);
auto& smem_reverse_scan = *reinterpret_cast<typename Ktraits::BlockReverseScanT::TempStorage*>(reinterpret_cast<char *>(&smem_scan) + sizeof(typename Ktraits::BlockScanT::TempStorage));
weight_t *smem_delta_a = reinterpret_cast<weight_t *>(smem_ + Ktraits::kSmemSize);
scan_t *smem_running_postfix = reinterpret_cast<scan_t *>(smem_delta_a + 2 * MAX_DSTATE + kNThreads);
weight_t *smem_da = reinterpret_cast<weight_t *>(smem_running_postfix + MAX_DSTATE);
weight_t *smem_dbc = reinterpret_cast<weight_t *>(smem_da + MAX_DSTATE);
const int batch_id = blockIdx.x;
const int dim_id = blockIdx.y;
const int group_id = dim_id / (params.dim_ngroups_ratio);
input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
+ dim_id * params.u_d_stride;
input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
+ dim_id * params.delta_d_stride;
input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
+ dim_id * params.dout_d_stride;
weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * params.A_d_stride;
weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * params.B_d_stride;
input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * params.C_d_stride;
input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
weight_t *dA = reinterpret_cast<weight_t *>(params.dA_ptr) + dim_id * params.dA_d_stride;
weight_t *dB = reinterpret_cast<weight_t *>(params.dB_ptr)
+ (!kIsVariableB ? dim_id * params.dB_d_stride : batch_id * (!kIsComplex ? params.dB_batch_stride : params.dB_batch_stride / 2) + group_id * params.dB_group_stride);
weight_t *dC = reinterpret_cast<weight_t *>(params.dC_ptr)
+ (!kIsVariableC ? dim_id * params.dC_d_stride : batch_id * (!kIsComplex ? params.dC_batch_stride : params.dC_batch_stride / 2) + group_id * params.dC_group_stride);
float *dD = params.dD_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.dD_ptr) + dim_id;
float D_val = params.D_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.D_ptr)[dim_id];
float *ddelta_bias = params.ddelta_bias_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.ddelta_bias_ptr) + dim_id;
float delta_bias = params.delta_bias_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id];
scan_t *x = params.x_ptr == nullptr
? nullptr
: reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id) * (params.n_chunks) * params.dstate;
float dD_val = 0;
float ddelta_bias_val = 0;
constexpr int kChunkSize = kNThreads * kNItems;
u += (params.n_chunks - 1) * kChunkSize;
delta += (params.n_chunks - 1) * kChunkSize;
dout += (params.n_chunks - 1) * kChunkSize;
Bvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
Cvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
for (int chunk = params.n_chunks - 1; chunk >= 0; --chunk) {
input_t u_vals[kNItems];
input_t delta_vals_load[kNItems];
input_t dout_vals_load[kNItems];
__syncthreads();
load_input<Ktraits>(u, u_vals, smem_load, params.seqlen - chunk * kChunkSize);
u -= kChunkSize;
__syncthreads();
load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
// Will reload delta at the same location if kDeltaSoftplus
if constexpr (!kDeltaSoftplus) { delta -= kChunkSize; }
__syncthreads();
load_input<Ktraits>(dout, dout_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
dout -= kChunkSize;
float dout_vals[kNItems], delta_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
dout_vals[i] = float(dout_vals_load[i]);
delta_vals[i] = float(delta_vals_load[i]) + delta_bias;
if constexpr (kDeltaSoftplus) {
delta_vals[i] = delta_vals[i] <= 20.f ? log1pf(expf(delta_vals[i])) : delta_vals[i];
}
}
if constexpr (kHasZ) {
input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
+ dim_id * params.z_d_stride + chunk * kChunkSize;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ dim_id * params.out_d_stride + chunk * kChunkSize;
input_t *dz = reinterpret_cast<input_t *>(params.dz_ptr) + batch_id * params.dz_batch_stride
+ dim_id * params.dz_d_stride + chunk * kChunkSize;
input_t z_vals[kNItems], out_vals[kNItems];
__syncthreads();
load_input<Ktraits>(z, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
__syncthreads();
load_input<Ktraits>(out, out_vals, smem_load, params.seqlen - chunk * kChunkSize);
float dz_vals[kNItems], z_silu_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float z_val = z_vals[i];
float z_sigmoid_val = 1.0f / (1.0f + expf(-z_val));
z_silu_vals[i] = z_val * z_sigmoid_val;
dz_vals[i] = dout_vals[i] * float(out_vals[i]) * z_sigmoid_val
* (1.0f + z_val * (1.0f - z_sigmoid_val));
dout_vals[i] *= z_silu_vals[i];
}
__syncthreads();
store_output<Ktraits>(dz, dz_vals, smem_store, params.seqlen - chunk * kChunkSize);
if (params.out_z_ptr != nullptr) { // Recompute and store out_z
float out_z_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) { out_z_vals[i] = float(out_vals[i]) * z_silu_vals[i]; }
// if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
// printf("out_val=%f, z_silu_val = %f, out_z_val = %f\n", float(out_vals[0]), z_silu_vals[0], out_z_vals[0]);
// }
input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
+ dim_id * params.out_z_d_stride + chunk * kChunkSize;
__syncthreads();
store_output<Ktraits>(out_z, out_z_vals, smem_store, params.seqlen - chunk * kChunkSize);
}
}
float du_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) { du_vals[i] = D_val * dout_vals[i]; }
#pragma unroll
for (int i = 0; i < kNItems; ++i) { dD_val += dout_vals[i] * float(u_vals[i]); }
float ddelta_vals[kNItems] = {0};
__syncthreads();
for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
const weight_t A_val = A[state_idx * params.A_dstate_stride];
// Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
weight_t A_scaled;
constexpr float kLog2e = M_LOG2E;
if constexpr (!kIsComplex) {
A_scaled = A_val * kLog2e;
} else {
A_scaled = complex_t(A_val.real_ * kLog2e, A_val.imag_);
}
weight_t B_val, C_val;
weight_t B_vals[kNItems], C_vals[kNItems];
if constexpr (!kIsVariableB) {
B_val = B[state_idx * params.B_dstate_stride];
} else {
load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
}
if constexpr (!kIsVariableC) {
C_val = C[state_idx * params.C_dstate_stride];
} else {
auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
}
// const weight_t A_val = smem_a[state_idx];
scan_t thread_data[kNItems], thread_reverse_data[kNItems];
if constexpr (!kIsComplex) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
const float delta_a_exp = exp2f(delta_vals[i] * A_scaled);
thread_data[i] = make_float2(delta_a_exp, !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
if (i == 0) {
smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
} else {
thread_reverse_data[i - 1].x = delta_a_exp;
}
thread_reverse_data[i].y = dout_vals[i] *
(!kIsVariableC
? (!kIsVariableB ? B_val * C_val : C_val)
: (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
}
__syncthreads();
thread_reverse_data[kNItems - 1].x = threadIdx.x == kNThreads - 1
? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
: smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
// Initialize running total
scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float2(1.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
);
scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float2(1.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
typename Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
);
if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
weight_t dA_val = 0, dBC_val = 0;
weight_t dB_vals[kNItems], dC_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
const float dx = thread_reverse_data[i].y;
const float ddelta_u = !kIsVariableB ? dx : dx * B_vals[i];
du_vals[i] += ddelta_u * delta_vals[i];
const float a = thread_data[i].y - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
ddelta_vals[i] += ddelta_u * float(u_vals[i]) + dx * A_val * a;
dA_val += dx * delta_vals[i] * a;
if constexpr (!kIsVariableB || !kIsVariableC) {
if constexpr (!kIsVariableB) { // dBC_val is dB_val
dBC_val += dout_vals[i] * (!kIsVariableC ? thread_data[i].y : thread_data[i].y * C_vals[i]);
} else { // dBC_val is dC_val
dBC_val += dout_vals[i] * thread_data[i].y;
}
}
if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
if constexpr (kIsVariableC) {
dC_vals[i] = dout_vals[i] * (!kIsVariableB ? thread_data[i].y * B_val : thread_data[i].y);
}
}
// Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
if constexpr (kIsVariableB || kIsVariableC) {
if constexpr (kIsVariableB) {
typename Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals, dB_vals);
}
if constexpr (kIsVariableC) {
auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
typename Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals, dC_vals);
}
const int seqlen_remaining = params.seqlen - chunk * kChunkSize - threadIdx.x;
weight_t *dB_cur = dB + state_idx * params.dB_dstate_stride + chunk * kChunkSize + threadIdx.x;
weight_t *dC_cur = dC + state_idx * params.dC_dstate_stride + chunk * kChunkSize + threadIdx.x;
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
if (i * kNThreads < seqlen_remaining) {
if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals[i]); }
if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals[i]); }
}
}
}
if constexpr (!kIsVariableB || !kIsVariableC) {
float2 dA_dBC_val = make_float2(dA_val, dBC_val);
dA_dBC_val = typename Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
dA_val = dA_dBC_val.x;
if (threadIdx.x == 0) {
smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dA_dBC_val.y : dA_dBC_val.y + smem_dbc[state_idx];
}
} else {
dA_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dA_val);
}
if (threadIdx.x == 0) {
smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
}
} else {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
// Pytorch's implementation of complex exp (which calls thrust) is very slow
complex_t delta_a_exp = cexp2f(delta_vals[i] * A_scaled);
weight_t B_delta_u_val = !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : B_vals[i] * delta_vals[i] * float(u_vals[i]);
thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
if (i == 0) {
smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
} else {
thread_reverse_data[i - 1].x = delta_a_exp.real_;
thread_reverse_data[i - 1].y = -delta_a_exp.imag_;
}
complex_t dout_BC = 2 * dout_vals[i]
* conj(!kIsVariableC
? (!kIsVariableB ? B_val * C_val : C_val)
: (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
thread_reverse_data[i].z = dout_BC.real_;
thread_reverse_data[i].w = dout_BC.imag_;
}
__syncthreads();
complex_t delta_a_exp = threadIdx.x == kNThreads - 1
? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
: smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
thread_reverse_data[kNItems - 1].x = delta_a_exp.real_;
thread_reverse_data[kNItems - 1].y = -delta_a_exp.imag_;
// Initialize running total
scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
typename Ktraits::BlockScanT(smem_scan).InclusiveScan(
thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
);
scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
typename Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
);
if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
weight_t dA_val = 0, dBC_val = 0;
weight_t dB_vals[kNItems], dC_vals[kNItems];
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
complex_t x = complex_t(thread_data[i].z, thread_data[i].w);
complex_t dx = complex_t(thread_reverse_data[i].z, thread_reverse_data[i].w);
float ddelta_u = !kIsVariableB ? dx.real_ : (dx * conj(B_vals[i])).real_;
if constexpr (!kIsVariableB || !kIsVariableC) {
if constexpr (!kIsVariableB) { // dBC_val is dB_val
dBC_val += (2 * dout_vals[i]) * conj(!kIsVariableC ? x : x * C_vals[i]);
} else { // dBC_val is dC_val
dBC_val += (2 * dout_vals[i]) * conj(x);
}
}
const complex_t a_conj = conj(x - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]));
du_vals[i] += ddelta_u * delta_vals[i];
ddelta_vals[i] += ddelta_u * float(u_vals[i]) + (dx * conj(A_val) * a_conj).real_;
dA_val += delta_vals[i] * dx * a_conj;
if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
if constexpr (kIsVariableC) {
dC_vals[i] = (2 * dout_vals[i]) * conj(!kIsVariableB ? x * B_val : x);
}
}
// Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
if constexpr (kIsVariableB || kIsVariableC) {
float dB_vals_f[kNItems * 2], dC_vals_f[kNItems * 2];
if constexpr (kIsVariableB) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
dB_vals_f[i * 2] = dB_vals[i].real_;
dB_vals_f[i * 2 + 1] = dB_vals[i].imag_;
}
typename Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals_f, dB_vals_f);
}
if constexpr (kIsVariableC) {
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
dC_vals_f[i * 2] = dC_vals[i].real_;
dC_vals_f[i * 2 + 1] = dC_vals[i].imag_;
}
auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
typename Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals_f, dC_vals_f);
}
const int seqlen_remaining = (params.seqlen - chunk * kChunkSize) * 2 - threadIdx.x;
float *dB_cur = reinterpret_cast<float *>(dB) + state_idx * params.dB_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
float *dC_cur = reinterpret_cast<float *>(dC) + state_idx * params.dC_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
#pragma unroll
for (int i = 0; i < kNItems * 2; ++i) {
if (i * kNThreads < seqlen_remaining) {
if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals_f[i]); }
if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals_f[i]); }
}
}
}
if constexpr (!kIsVariableB || !kIsVariableC) {
float4 dA_dBC_val = make_float4(dA_val.real_, dA_val.imag_, dBC_val.real_, dBC_val.imag_);
dA_dBC_val = typename Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
dA_val = complex_t(dA_dBC_val.x, dA_dBC_val.y);
dBC_val = complex_t(dA_dBC_val.z, dA_dBC_val.w);
if (threadIdx.x == 0) {
smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dBC_val : dBC_val + smem_dbc[state_idx];
}
} else {
dA_val = typename Ktraits::BlockReduceComplexT(smem_reduce_complex).Sum(dA_val);
}
if (threadIdx.x == 0) {
smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
}
}
}
if constexpr (kDeltaSoftplus) {
__syncthreads();
input_t delta_vals_load[kNItems];
load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
delta -= kChunkSize;
#pragma unroll
for (int i = 0; i < kNItems; ++i) {
float delta_val = float(delta_vals_load[i]) + delta_bias;
float delta_val_neg_exp = expf(-delta_val);
ddelta_vals[i] = delta_val <= 20.f
? ddelta_vals[i] / (1.f + delta_val_neg_exp)
: ddelta_vals[i];
}
}
for (int i = 0; i < kNItems; ++i) { ddelta_bias_val += ddelta_vals[i]; }
input_t *du = reinterpret_cast<input_t *>(params.du_ptr) + batch_id * params.du_batch_stride
+ dim_id * params.du_d_stride + chunk * kChunkSize;
input_t *ddelta = reinterpret_cast<input_t *>(params.ddelta_ptr) + batch_id * params.ddelta_batch_stride
+ dim_id * params.ddelta_d_stride + chunk * kChunkSize;
__syncthreads();
store_output<Ktraits>(du, du_vals, smem_store, params.seqlen - chunk * kChunkSize);
__syncthreads();
store_output<Ktraits>(ddelta, ddelta_vals, smem_store, params.seqlen - chunk * kChunkSize);
Bvar -= kChunkSize * (!kIsComplex ? 1 : 2);
Cvar -= kChunkSize * (!kIsComplex ? 1 : 2);
}
if (params.dD_ptr != nullptr) {
dD_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dD_val);
if (threadIdx.x == 0) { gpuAtomicAdd(dD, dD_val); }
}
if (params.ddelta_bias_ptr != nullptr) {
__syncthreads();
ddelta_bias_val = typename Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(ddelta_bias_val);
if (threadIdx.x == 0) { gpuAtomicAdd(ddelta_bias, ddelta_bias_val); }
}
for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
gpuAtomicAdd(&(dA[state_idx * params.dA_dstate_stride]), smem_da[state_idx]);
weight_t dBC_val;
if (!kIsVariableB || !kIsVariableC) { dBC_val = smem_dbc[state_idx]; }
if constexpr (!kIsVariableB) {
gpuAtomicAdd(&(dB[state_idx * params.dB_dstate_stride]),
!kIsVariableC ? dBC_val * conj(C[state_idx * params.C_dstate_stride]) : dBC_val);
}
if constexpr (!kIsVariableC) {
gpuAtomicAdd(&(dC[state_idx * params.dC_dstate_stride]),
!kIsVariableB ? dBC_val * conj(B[state_idx * params.B_dstate_stride]) : dBC_val);
}
}
}
template<int kNThreads, int kNItems, typename input_t, typename weight_t>
void selective_scan_bwd_launch(SSMParamsBwd ¶ms, cudaStream_t stream) {
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
BOOL_SWITCH(params.delta_softplus, kDeltaSoftplus, [&] {
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, kIsEvenLen, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
// using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, true, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
// TODO: check this
constexpr int kSmemSize = Ktraits::kSmemSize + MAX_DSTATE * sizeof(typename Ktraits::scan_t) + (kNThreads + 4 * MAX_DSTATE) * sizeof(typename Ktraits::weight_t);
dim3 grid(params.batch, params.dim);
auto kernel = &selective_scan_bwd_kernel<Ktraits>;
if (kSmemSize >= 48 * 1024) {
#ifndef USE_ROCM
C10_CUDA_CHECK(cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
#else
C10_CUDA_CHECK(cudaFuncSetAttribute(
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
std::cerr << "Warning (selective_scan_bwd_kernel): attempting to set maxDynamicSharedMemorySize on an AMD GPU which is currently a non-op (in ROCm versions <= 6.1). This might lead to undefined behavior. \n" << std::endl;
#endif
}
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
});
});
});
});
});
}
template<typename input_t, typename weight_t>
void selective_scan_bwd_cuda(SSMParamsBwd ¶ms, cudaStream_t stream) {
#ifndef USE_ROCM
if (params.seqlen <= 128) {
selective_scan_bwd_launch<32, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 256) {
selective_scan_bwd_launch<32, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_bwd_launch<32, 16, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
}
#else
if (params.seqlen <= 256) {
selective_scan_bwd_launch<64, 4, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 512) {
selective_scan_bwd_launch<64, 8, input_t, weight_t>(params, stream);
} else if (params.seqlen <= 1024) {
selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
} else {
selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
}
#endif
} |