Spaces:
Running
Running
File size: 53,502 Bytes
306b4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
# Copyright (c) 2024, Tri Dao, Albert Gu.
"""We want triton==2.1.0 or 2.2.0 for this
"""
from typing import Optional
import math
from packaging import version
import torch
import torch.nn.functional as F
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
import triton
import triton.language as tl
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn
import causal_conv1d_cuda
except ImportError:
causal_conv1d_fn, causal_conv1d_cuda = None, None
from mamba_ssm.ops.triton.ssd_bmm import _bmm_chunk_fwd, _bmm_chunk_bwd
from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_cumsum_fwd, _chunk_cumsum_bwd
from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_state_fwd, _chunk_state_bwd_db
from mamba_ssm.ops.triton.ssd_chunk_state import _chunk_state_bwd_ddAcs_stable
from mamba_ssm.ops.triton.ssd_chunk_state import chunk_state, chunk_state_ref
from mamba_ssm.ops.triton.ssd_chunk_state import chunk_state_varlen
from mamba_ssm.ops.triton.ssd_state_passing import _state_passing_fwd, _state_passing_bwd
from mamba_ssm.ops.triton.ssd_state_passing import state_passing, state_passing_ref
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_fwd, _chunk_scan_bwd_dz, _chunk_scan_bwd_dstates
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_bwd_dC, _chunk_scan_bwd_dcb
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_bwd_ddAcs_stable
from mamba_ssm.ops.triton.ssd_chunk_scan import chunk_scan, chunk_scan_ref
from mamba_ssm.ops.triton.ssd_chunk_scan import _chunk_scan_bwd_ddAcs_prev
from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn, _layer_norm_fwd, _layer_norm_bwd
from mamba_ssm.ops.triton.k_activations import _swiglu_fwd, _swiglu_bwd
TRITON_22 = version.parse(triton.__version__) >= version.parse('2.2.0')
def init_to_zero(names):
return lambda nargs: [nargs[name].zero_() for name in names if nargs[name] is not None]
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 64}, num_stages=3, num_warps=8, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=5, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32}, num_stages=4, num_warps=4, pre_hook=init_to_zero(["ddt_ptr"])),
],
key=['chunk_size', 'hdim', 'dstate'],
)
@triton.jit
def _chunk_scan_chunk_state_bwd_dx_kernel(
# Pointers to matrices
x_ptr, cb_ptr, dout_ptr, dt_ptr, dA_cumsum_ptr, seq_idx_ptr, D_ptr,
b_ptr, dstates_ptr,
dx_ptr, ddt_ptr, dD_ptr,
# Matrix dimensions
chunk_size, hdim, dstate,
batch, seqlen, nheads_ngroups_ratio,
# Strides
stride_x_batch, stride_x_seqlen, stride_x_head, stride_x_hdim,
stride_cb_batch, stride_cb_chunk, stride_cb_head, stride_cb_csize_m, stride_cb_csize_k,
stride_dout_batch, stride_dout_seqlen, stride_dout_head, stride_dout_hdim,
stride_dt_batch, stride_dt_chunk, stride_dt_head, stride_dt_csize,
stride_dA_cs_batch, stride_dA_cs_chunk, stride_dA_cs_head, stride_dA_cs_csize,
stride_seq_idx_batch, stride_seq_idx_seqlen,
stride_D_head,
stride_b_batch, stride_b_seqlen, stride_b_head, stride_b_dstate,
stride_dstates_batch, stride_dstates_chunk, stride_dstates_head, stride_dstates_hdim, stride_dstates_dstate,
stride_dx_batch, stride_dx_seqlen, stride_dx_head, stride_dx_hdim,
stride_ddt_batch, stride_ddt_chunk, stride_ddt_head, stride_ddt_csize,
stride_dD_batch, stride_dD_chunk, stride_dD_head, stride_dD_csize, stride_dD_hdim,
# Meta-parameters
HAS_D: tl.constexpr,
D_HAS_HDIM: tl.constexpr,
HAS_SEQ_IDX: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
BLOCK_SIZE_DSTATE: tl.constexpr,
IS_TRITON_22: tl.constexpr,
):
pid_bc = tl.program_id(axis=1)
pid_c = pid_bc // batch
pid_b = pid_bc - pid_c * batch
pid_h = tl.program_id(axis=2)
num_pid_n = tl.cdiv(hdim, BLOCK_SIZE_N)
pid_m = tl.program_id(axis=0) // num_pid_n
pid_n = tl.program_id(axis=0) % num_pid_n
x_ptr += pid_b * stride_x_batch + pid_c * chunk_size * stride_x_seqlen + pid_h * stride_x_head
cb_ptr += pid_b * stride_cb_batch + pid_c * stride_cb_chunk + (pid_h // nheads_ngroups_ratio) * stride_cb_head
dout_ptr += pid_b * stride_dout_batch + pid_c * chunk_size * stride_dout_seqlen + pid_h * stride_dout_head
dt_ptr += pid_b * stride_dt_batch + pid_c * stride_dt_chunk + pid_h * stride_dt_head
ddt_ptr += pid_b * stride_ddt_batch + pid_c * stride_ddt_chunk + pid_h * stride_ddt_head
dA_cumsum_ptr += pid_b * stride_dA_cs_batch + pid_c * stride_dA_cs_chunk + pid_h * stride_dA_cs_head
b_ptr += pid_b * stride_b_batch + pid_c * chunk_size * stride_b_seqlen + (pid_h // nheads_ngroups_ratio) * stride_b_head
dstates_ptr += pid_b * stride_dstates_batch + pid_c * stride_dstates_chunk + pid_h * stride_dstates_head
if HAS_SEQ_IDX:
seq_idx_ptr += pid_b * stride_seq_idx_batch + pid_c * chunk_size * stride_seq_idx_seqlen
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
chunk_size_limit = min(chunk_size, seqlen - pid_c * chunk_size)
acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
dA_cs_m = tl.load(dA_cumsum_ptr + offs_m * stride_dA_cs_csize, mask=offs_m < chunk_size_limit, other=0.0).to(tl.float32)
dA_cs_last = tl.load(dA_cumsum_ptr + (chunk_size - 1) * stride_dA_cs_csize).to(tl.float32)
if not HAS_SEQ_IDX:
scale = tl.exp(dA_cs_last - dA_cs_m)
else:
seq_idx_m = tl.load(seq_idx_ptr + offs_m * stride_seq_idx_seqlen, mask=offs_m < chunk_size_limit, other=-1)
seq_idx_last = tl.load(seq_idx_ptr + (chunk_size_limit - 1) * stride_seq_idx_seqlen)
scale = tl.where(seq_idx_m == seq_idx_last, tl.exp(dA_cs_last - dA_cs_m), 0.0)
# Might be faster to just do 1 iteration with larger BLOCK_SIZE_K, up to block size 128
# However, we're getting error with the Triton compiler 2.1.0 for that code path:
# Unexpected mma -> mma layout conversion
# Triton 2.2.0 fixes this
offs_dstate = tl.arange(0, BLOCK_SIZE_DSTATE if IS_TRITON_22 and BLOCK_SIZE_DSTATE <= 128 else BLOCK_SIZE_K)
b_ptrs = b_ptr + (offs_m[:, None] * stride_b_seqlen + offs_dstate[None, :] * stride_b_dstate)
dstates_ptrs = dstates_ptr + (offs_n[None, :] * stride_dstates_hdim + offs_dstate[:, None] * stride_dstates_dstate)
if IS_TRITON_22 and BLOCK_SIZE_DSTATE <= 128:
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_dstate[None, :] < dstate), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_dstate[:, None] < dstate) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc = tl.dot(b, dstates) * scale[:, None]
else:
for k in range(0, dstate, BLOCK_SIZE_K):
b = tl.load(b_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_dstate[None, :] < dstate - k), other=0.0)
dstates = tl.load(dstates_ptrs, mask=(offs_dstate[:, None] < dstate - k) & (offs_n[None, :] < hdim), other=0.0)
dstates = dstates.to(b_ptr.dtype.element_ty)
acc += tl.dot(b, dstates)
b_ptrs += BLOCK_SIZE_K * stride_b_dstate
dstates_ptrs += BLOCK_SIZE_K * stride_dstates_dstate
acc *= scale[:, None]
# x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim)
# x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
# dt_ptrs = dt_ptr + offs_m * stride_dt_csize
# dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size_limit, other=0.0).to(tl.float32)
# ddt = tl.sum(acc * x, axis=1) * dt_m
# ddt_ptrs = ddt_ptr + offs_m * stride_ddt_csize
# tl.atomic_add(ddt_ptrs, ddt, mask=offs_m < chunk_size)
offs_k = tl.arange(0, BLOCK_SIZE_K)
cb_ptrs = cb_ptr + (offs_m[:, None] * stride_cb_csize_m + offs_k[None, :] * stride_cb_csize_k)
dout_ptrs = dout_ptr + (offs_k[:, None] * stride_dout_seqlen + offs_n[None, :] * stride_dout_hdim)
dA_cumsum_ptrs = dA_cumsum_ptr + offs_k * stride_dA_cs_csize
K_MAX = chunk_size_limit
K_MIN = pid_m * BLOCK_SIZE_M
cb_ptrs += K_MIN * stride_cb_csize_k
dout_ptrs += K_MIN * stride_dout_seqlen
dA_cumsum_ptrs += K_MIN * stride_dA_cs_csize
for k in range(K_MIN, K_MAX, BLOCK_SIZE_K):
k = tl.multiple_of(k, BLOCK_SIZE_K)
# For some reason setting mask to (offs_m[:, None] < chunk_size_limit) is much slower
cb = tl.load(cb_ptrs, mask=(offs_m[:, None] < chunk_size) & (offs_k[None, :] < K_MAX - k), other=0.0)
dout = tl.load(dout_ptrs, mask=(offs_k[:, None] < K_MAX - k) & (offs_n[None, :] < hdim), other=0.0)
dA_cs_k = tl.load(dA_cumsum_ptrs, mask=offs_k < K_MAX - k, other=0.0).to(tl.float32)
cb *= tl.exp(dA_cs_k[None, :] - dA_cs_m[:, None])
# If we don't have the (k + offs_k[None, :] < K_MAX) mask, for indices outside this range,
# we might have dA_cs_m = 0.0 and dA_cs_k very negative, and tl.exp will return inf.
# Multiplying with cb, which is 0.0 outside the range, will make the result NaN.
# This will cause NaN in acc, and hence NaN in dx and ddt.
mask = (k + offs_k[None, :] >= offs_m[:, None]) & (k + offs_k[None, :] < K_MAX)
cb = tl.where(mask, cb, 0.0)
cb = cb.to(dout_ptr.dtype.element_ty)
acc += tl.dot(cb, dout)
cb_ptrs += BLOCK_SIZE_K * stride_cb_csize_k
dout_ptrs += BLOCK_SIZE_K * stride_dout_seqlen
dA_cumsum_ptrs += BLOCK_SIZE_K * stride_dA_cs_csize
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
dt_ptrs = dt_ptr + offs_m * stride_dt_csize
dt_m = tl.load(dt_ptrs, mask=offs_m < chunk_size_limit, other=0.0).to(tl.float32)
dx = acc * dt_m[:, None]
dx_ptr += pid_b * stride_dx_batch + pid_c * chunk_size * stride_dx_seqlen + pid_h * stride_dx_head
dx_ptrs = dx_ptr + (offs_m[:, None] * stride_dx_seqlen + offs_n[None, :] * stride_dx_hdim)
if HAS_D:
dout_res_ptrs = dout_ptr + (offs_m[:, None] * stride_dout_seqlen + offs_n[None, :] * stride_dout_hdim)
dout_res = tl.load(dout_res_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
if D_HAS_HDIM:
D = tl.load(D_ptr + pid_h * stride_D_head + offs_n, mask=offs_n < hdim, other=0.0).to(tl.float32)
else:
D = tl.load(D_ptr + pid_h * stride_D_head).to(tl.float32)
dx += dout_res * D
tl.store(dx_ptrs, dx, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim))
x_ptrs = x_ptr + (offs_m[:, None] * stride_x_seqlen + offs_n[None, :] * stride_x_hdim)
x = tl.load(x_ptrs, mask=(offs_m[:, None] < chunk_size_limit) & (offs_n[None, :] < hdim), other=0.0).to(tl.float32)
if HAS_D:
dD_ptr += pid_b * stride_dD_batch + pid_c * stride_dD_chunk + pid_h * stride_dD_head + pid_m * stride_dD_csize
if D_HAS_HDIM:
dD_ptrs = dD_ptr + offs_n * stride_dD_hdim
dD = tl.sum(dout_res * x, axis=0)
tl.store(dD_ptrs, dD, mask=offs_n < hdim)
else:
dD = tl.sum(dout_res * x)
tl.store(dD_ptr, dD)
ddt = tl.sum(acc * x, axis=1)
ddt_ptrs = ddt_ptr + offs_m * stride_ddt_csize
tl.atomic_add(ddt_ptrs, ddt, mask=offs_m < chunk_size)
def _chunk_scan_chunk_state_bwd_dx(x, dt, dA_cumsum, B, CB, dout, dstates, D=None, seq_idx=None, dx=None):
batch, seqlen, nheads, headdim = x.shape
_, _, nchunks, chunk_size = dt.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert CB.shape == (batch, nchunks, ngroups, chunk_size, chunk_size)
assert dt.shape == (batch, nheads, nchunks, chunk_size)
assert dA_cumsum.shape == dt.shape
assert dout.shape == x.shape
assert dstates.shape == (batch, nchunks, nheads, headdim, dstate)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if D is not None:
assert D.shape == (nheads, headdim) or D.shape == (nheads,)
assert D.stride(-1) == 1
BLOCK_SIZE_min = 32
dD = torch.empty(triton.cdiv(chunk_size, BLOCK_SIZE_min), batch, nchunks, nheads,
headdim if D.dim() == 2 else 1, device=D.device, dtype=torch.float32)
else:
dD = None
dD_strides = ((dD.stride(0), dD.stride(1), dD.stride(2), dD.stride(3), dD.stride(4))
if D is not None else (0, 0, 0, 0, 0))
if dx is None:
dx = torch.empty_like(x)
else:
assert dx.shape == x.shape
ddt = torch.empty(batch, nheads, nchunks, chunk_size, device=dout.device, dtype=torch.float32)
grid_dx = lambda META: (triton.cdiv(chunk_size, META['BLOCK_SIZE_M']) * triton.cdiv(headdim, META['BLOCK_SIZE_N']),
batch * nchunks, nheads)
with torch.cuda.device(x.device.index):
_chunk_scan_chunk_state_bwd_dx_kernel[grid_dx](
x, CB, dout, dt, dA_cumsum, seq_idx, D, B, dstates, dx, ddt, dD,
chunk_size, headdim, dstate,
batch, seqlen, nheads // ngroups,
x.stride(0), x.stride(1), x.stride(2), x.stride(3),
CB.stride(0), CB.stride(1), CB.stride(2), CB.stride(-1), CB.stride(-2),
dout.stride(0), dout.stride(1), dout.stride(2), dout.stride(3),
dt.stride(0), dt.stride(2), dt.stride(1), dt.stride(3),
dA_cumsum.stride(0), dA_cumsum.stride(2), dA_cumsum.stride(1), dA_cumsum.stride(3),
*((seq_idx.stride(0), seq_idx.stride(1)) if seq_idx is not None else (0, 0)),
D.stride(0) if D is not None else 0,
B.stride(0), B.stride(1), B.stride(2), B.stride(3),
dstates.stride(0), dstates.stride(1), dstates.stride(2), dstates.stride(3), dstates.stride(4),
dx.stride(0), dx.stride(1), dx.stride(2), dx.stride(3),
ddt.stride(0), ddt.stride(2), ddt.stride(1), ddt.stride(3),
dD_strides[1], dD_strides[2], dD_strides[3], dD_strides[0], dD_strides[4],
D is not None,
D.dim() == 2 if D is not None else True,
HAS_SEQ_IDX=seq_idx is not None,
BLOCK_SIZE_DSTATE=max(triton.next_power_of_2(dstate), 16),
IS_TRITON_22=TRITON_22
)
if D is not None:
BLOCK_SIZE_actual = _chunk_scan_chunk_state_bwd_dx_kernel.best_config.kwargs["BLOCK_SIZE_M"]
n_valid_blocks = (chunk_size + BLOCK_SIZE_actual - 1) // BLOCK_SIZE_actual
dD = dD[:n_valid_blocks].sum(dim=(0, 1, 2)).to(dtype=D.dtype)
if D.dim() == 1:
dD = rearrange(dD, "h 1 -> h")
return dx, ddt.to(dtype=dt.dtype), dD
def _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf"))):
batch, seqlen, nheads, headdim = x.shape
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert x.shape == (batch, seqlen, nheads, headdim)
assert dt.shape == (batch, seqlen, nheads)
assert A.shape == (nheads,)
assert C.shape == B.shape
if z is not None:
assert z.shape == x.shape
if D is not None:
assert D.shape == (nheads, headdim) or D.shape == (nheads,)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if x.stride(-1) != 1 and x.stride(1) != 1: # Either M or K dimension should be contiguous
x = x.contiguous()
if z is not None and z.stride(-1) != 1 and z.stride(1) != 1: # Either M or K dimension should be contiguous
z = z.contiguous()
if D is not None and D.stride(-1) != 1:
D = D.contiguous()
if initial_states is not None:
assert initial_states.shape == (batch, nheads, headdim, dstate)
# # (batch, nchunks, chunk_size, chunk_size) or (batch, nchunks, nheads, chunk_size, chunk_size)
# dA_cumsum_tmp0, dt_tmp0 = _chunk_cumsum_fwd(dt[:, :147], A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus)
# dA_cumsum_tmp1, dt_tmp1 = _chunk_cumsum_fwd(dt[:, 147:], A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus)
# dA_cumsum_tmp2, dt_tmp2 = _chunk_cumsum_fwd(dt[:, 147:256], A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus)
dA_cumsum, dt = _chunk_cumsum_fwd(dt, A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit)
states = _chunk_state_fwd(B, x, dt, dA_cumsum, seq_idx=seq_idx, states_in_fp32=True)
# states_tmp0 = _chunk_state_fwd(B[:, :147], x[:, :147], dt_tmp0, dA_cumsum_tmp0, states_in_fp32=True)
# states_tmp1 = _chunk_state_fwd(B[:, 147:], x[:, 147:], dt_tmp1, dA_cumsum_tmp1, states_in_fp32=True)
# states_tmp2 = _chunk_state_fwd(B[:, 147:256], x[:, 147:256], dt_tmp2, dA_cumsum_tmp2, states_in_fp32=True)
states, final_states = _state_passing_fwd(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1],
initial_states=rearrange(initial_states, "... p n -> ... (p n)") if initial_states is not None else None,
seq_idx=seq_idx, chunk_size=chunk_size, out_dtype=C.dtype)
states, final_states = [rearrange(t, "... (p n) -> ... p n", n=dstate) for t in [states, final_states]]
# states_tmp0 = rearrange(_state_passing_fwd(rearrange(states_tmp0, "... p n -> ... (p n)"), dA_cumsum_tmp0[:, :, :, -1], chunk_size=chunk_size), "... (p n) -> ... p n", n=dstate)
# states_tmp1 = rearrange(_state_passing_fwd(rearrange(states_tmp1, "... p n -> ... (p n)"), dA_cumsum_tmp1[:, :, :, -1], chunk_size=chunk_size), "... (p n) -> ... p n", n=dstate)
CB = _bmm_chunk_fwd(C, B, chunk_size, seq_idx=seq_idx, output_dtype=torch.float32)
out, out_x = _chunk_scan_fwd(CB, x, dt, dA_cumsum, C, states, D=D, z=z, seq_idx=seq_idx)
if cu_seqlens is None:
return out, out_x, dt, dA_cumsum, states, final_states
else:
assert batch == 1, "passing cu_seqlens to get the varlen states is only supported if batch dimension is 1"
varlen_states = chunk_state_varlen(B.squeeze(0), x.squeeze(0), dt.squeeze(0), dA_cumsum.squeeze(0),
cu_seqlens, states.squeeze(0))
return out, out_x, dt, dA_cumsum, states, final_states, varlen_states
def _mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, chunk_size, D=None, z=None,
dt_bias=None, initial_states=None, dfinal_states=None, seq_idx=None, dt_softplus=False,
dt_limit=(0.0, float("inf")),
dx=None, ddt=None, dB=None, dC=None, dz=None, recompute_output=False):
if dout.stride(-1) != 1:
dout = dout.contiguous()
batch, seqlen, nheads, headdim = x.shape
nchunks = math.ceil(seqlen / chunk_size)
_, _, ngroups, dstate = B.shape
assert dout.shape == (batch, seqlen, nheads, headdim)
assert dt.shape == (batch, seqlen, nheads)
assert A.shape == (nheads,)
assert nheads % ngroups == 0
assert B.shape == (batch, seqlen, ngroups, dstate)
assert C.shape == B.shape
assert out.shape == x.shape
if initial_states is not None:
assert initial_states.shape == (batch, nheads, headdim, dstate)
if seq_idx is not None:
assert seq_idx.shape == (batch, seqlen)
if dx is not None:
assert dx.shape == x.shape
if dB is not None:
assert dB.shape == B.shape
dB_given = dB
else:
dB_given = torch.empty_like(B)
if dC is not None:
assert dC.shape == C.shape
dC_given = dC
else:
dC_given = torch.empty_like(C)
if dz is not None:
assert z is not None
assert dz.shape == z.shape
if ddt is not None:
assert ddt.shape == dt.shape
ddt_given = ddt
else:
ddt_given = torch.empty_like(dt)
# TD: For some reason Triton (2.1.0 and 2.2.0) errors with
# "[CUDA]: invalid device context" (e.g. during varlne test), and cloning makes it work. Idk why.
dt_in = dt.clone()
dA_cumsum, dt = _chunk_cumsum_fwd(dt_in, A, chunk_size, dt_bias=dt_bias, dt_softplus=dt_softplus,
dt_limit=dt_limit)
CB = _bmm_chunk_fwd(C, B, chunk_size, seq_idx=seq_idx, output_dtype=torch.float32)
states = _chunk_state_fwd(B, x, dt, dA_cumsum, seq_idx=seq_idx, states_in_fp32=True)
states, _ = _state_passing_fwd(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1],
initial_states=rearrange(initial_states, "... p n -> ... (p n)") if initial_states is not None else None,
seq_idx=seq_idx, chunk_size=chunk_size)
states = rearrange(states, "... (p n) -> ... p n", n=dstate)
if z is not None:
dz, dout, dD, *rest = _chunk_scan_bwd_dz(x, z, out, dout, chunk_size=chunk_size, has_ddAcs=False, D=D, dz=dz, recompute_output=recompute_output)
outz = rest[0] if recompute_output else out
else:
dz = None
outz = out
dstates = _chunk_scan_bwd_dstates(C, dA_cumsum, dout, seq_idx=seq_idx, dtype=states.dtype)
# dstates has length nchunks, containing the gradient to initial states at index 0 and
# gradient to the states of chunk (nchunks - 2) at index (nchunks - 1)
# Do computation in fp32 but convert dstates and states to fp16/bf16 since dstates and states
# will be used in matmul in the next kernels.
dstates, ddA_chunk_cumsum, dinitial_states, states = _state_passing_bwd(
rearrange(states, "... p n -> ... (p n)"),
dA_cumsum[:, :, :, -1],
rearrange(dstates, "... p n -> ... (p n)"),
dfinal_states=rearrange(dfinal_states, "... p n -> ... (p n)") if dfinal_states is not None else None,
seq_idx=seq_idx,
has_initial_states=initial_states is not None,
dstates_dtype=x.dtype,
states_dtype=x.dtype,
chunk_size=chunk_size,
)
# dstates has length nchunks, containing the gradient to states of chunk 0 at index 0 and
# gradient to the final states at index (nchunks - 1)
# states has length nchunks, containing the initial states at index 0 and the state for chunk (nchunks - 2) at index (nchunks - 1)
# The final states is not stored.
states = rearrange(states, "... (p n) -> ... p n", n=dstate)
dstates = rearrange(dstates, "... (p n) -> ... p n", n=dstate)
dinitial_states = rearrange(dinitial_states, "... (p n) -> ... p n", n=dstate) if dinitial_states is not None else None
dx, ddt, dD_from_x = _chunk_scan_chunk_state_bwd_dx(x, dt, dA_cumsum, B, CB, dout, dstates, D=D, seq_idx=seq_idx, dx=dx)
# dB = _chunk_state_bwd_db(x, dt, dA_cumsum, dstates, seq_idx=seq_idx, ngroups=ngroups)
dB, ddA_next = _chunk_state_bwd_db(x, dt, dA_cumsum, dstates, seq_idx=seq_idx, B=B, ngroups=ngroups)
# dC = _chunk_scan_bwd_dC(states[:, :-1].to(x.dtype), dA_cumsum, dout, seq_idx=seq_idx, ngroups=ngroups)
dC, ddA_cumsum_prev = _chunk_scan_bwd_dC(states.to(x.dtype), dA_cumsum, dout, seq_idx=seq_idx, C=C, ngroups=ngroups)
# Computing ddA with the dcb kernel is much slower, so we're not using it for now
dCB = _chunk_scan_bwd_dcb(x, dt, dA_cumsum, dout, seq_idx=seq_idx, ngroups=ngroups)
# dCB, ddA_tmp = _chunk_scan_bwd_dcb(x, dt, dA_cumsum, dout, seq_idx=seq_idx, CB=CB, ngroups=ngroups)
dCB = dCB.to(CB.dtype)
_bmm_chunk_bwd(C, dCB, residual=dB, out=dB_given)
_bmm_chunk_bwd(B, rearrange(dCB, "... l s -> ... s l"), residual=dC, out=dC_given)
# If we have z, then dout_x is recomputed in fp32 so dD = (dout_x * x).sum() is more accurate
# than dD_from_x = (dout_x * x).sum() where dout_x is in fp16/bf16
if z is None:
dD = dD_from_x
# Formula for ddA_cumsum, assuming out is the output of the forward pass before adding x * D.
# ddA_cumsum = torch.einsum("bclhp,bclhp->bhcl", out.float(), dout.float()) - ddt * dt
# However, this is numerically unstable: when we do the reverse cumsum on ddA_cumsum, there might
# be a lot of underflow.
# This is already done as part of bwd_dC kernel
# ddA_cumsum_prev = _chunk_scan_bwd_ddAcs_prev(states[:, :-1], C, dout, dA_cumsum, seq_idx=seq_idx)
ddA_cumsum_prev[..., -1] += ddA_chunk_cumsum
ddA_prev = ddA_cumsum_prev.flip([-1]).cumsum(dim=-1).flip([-1])
# This is already done as part of bwd_dB kernel
# ddA_next = _chunk_state_bwd_ddAcs_stable(B, x, dt, dA_cumsum, dstates, seq_idx=seq_idx)
# We don't need to pass in seq_idx because CB also zeros out entries where seq_idx[i] != seq_idx[j]
ddA = _chunk_scan_bwd_ddAcs_stable(x, dt, dA_cumsum, dout, CB)
ddA += ddA_next + ddA_prev
ddt_given, dA, ddt_bias = _chunk_cumsum_bwd(ddA, ddt, dt_in, A, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit, ddt=ddt_given)
# These 2 lines are just to test ddt and dA being computed by old code
# _, dA = selective_scan_bwd(dout, x, dt, A, B, C, D=D.float(), z=z)
# ddt_given.copy_(ddt)
return_vals = (dx, ddt_given, dA, dB_given, dC_given, dD, dz, ddt_bias, dinitial_states)
return return_vals if not recompute_output else (*return_vals, outz)
def selective_scan_bwd(dout, x, dt, A, B, C, D=None, z=None):
"""
Argument:
dout: (batch, seqlen, nheads, headdim)
x: (batch, seqlen, nheads, headdim)
dt: (batch, nheads, nchunks, chunk_size) or (batch, nheads, headdim, nchunks, chunk_size)
A: (nheads) or (dim, dstate)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
Return:
out: (batch, seqlen, nheads, headdim)
"""
import selective_scan
batch, seqlen, nheads, headdim = x.shape
chunk_size = dt.shape[-1]
_, _, ngroups, dstate = B.shape
assert nheads % ngroups == 0
x = rearrange(x, "b l h p -> b (h p) l")
squeeze_dt = dt.dim() == 4
if dt.dim() == 4:
dt = repeat(dt, "b h c l -> b h p c l", p=headdim)
dt = rearrange(dt, "b h p c l -> b (h p) (c l)", p=headdim)
squeeze_A = A.dim() == 1
if A.dim() == 1:
A = repeat(A, "h -> (h p) n", p=headdim, n=dstate).to(dtype=torch.float32)
else:
A = A.to(dtype=torch.float32)
B = rearrange(B, "b l g n -> b g n l")
C = rearrange(C, "b l g n -> b g n l")
if D is not None:
if D.dim() == 2:
D = rearrange(D, "h p -> (h p)")
else:
D = repeat(D, "h -> (h p)", p=headdim)
if z is not None:
z = rearrange(z, "b l h p -> b (h p) l")
if x.stride(-1) != 1:
x = x.contiguous()
if dt.stride(-1) != 1:
dt = dt.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
_, intermediate, *rest = selective_scan.fwd(x, dt.to(dtype=x.dtype), A, B, C, D, z, None, False)
if z is not None:
out = rest[0]
else:
out = None
dout = rearrange(dout, "b l h p -> b (h p) l")
if dout.stride(-1) != 1:
dout = dout.contiguous()
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
# backward of selective_scan with the backward of chunk).
# Here we just pass in None and dz will be allocated in the C++ code.
_, ddt, dA, *rest = selective_scan.bwd(
x, dt.to(dtype=x.dtype), A, B, C, D, z, None, dout, intermediate, out, None, False,
False # option to recompute out_z, not used here
)
ddt = rearrange(ddt, "b (h p) (c l) -> b h p c l", p=headdim, l=chunk_size)
if squeeze_dt:
ddt = ddt.float().sum(dim=2)
if squeeze_A:
dA = rearrange(dA, "(h p) n -> h p n", p=headdim).sum(dim=(1, 2))
return ddt, dA
class MambaChunkScanCombinedFn(torch.autograd.Function):
@staticmethod
def forward(ctx, x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf")), return_final_states=False, return_varlen_states=False):
ctx.dt_dtype = dt.dtype
if not return_varlen_states:
cu_seqlens = None
else:
assert cu_seqlens is not None, "cu_seqlens must be provided if return_varlen_states is True"
out, out_x, dt_out, dA_cumsum, states, final_states, *rest = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, cu_seqlens=cu_seqlens, dt_softplus=dt_softplus, dt_limit=dt_limit)
ctx.save_for_backward(out if z is None else out_x, x, dt, dA_cumsum, A, B, C, D, z, dt_bias, initial_states, seq_idx)
ctx.dt_softplus = dt_softplus
ctx.chunk_size = chunk_size
ctx.dt_limit = dt_limit
ctx.return_final_states = return_final_states
ctx.return_varlen_states = return_varlen_states
if not return_varlen_states:
return out if not return_final_states else (out, final_states)
else:
varlen_states = rest[0]
return (out, varlen_states) if not return_final_states else (out, final_states, varlen_states)
@staticmethod
def backward(ctx, dout, *args):
out, x, dt, dA_cumsum, A, B, C, D, z, dt_bias, initial_states, seq_idx = ctx.saved_tensors
assert not ctx.return_varlen_states, "return_varlen_states is not supported in backward"
dfinal_states = args[0] if ctx.return_final_states else None
dx, ddt, dA, dB, dC, dD, dz, ddt_bias, dinitial_states = _mamba_chunk_scan_combined_bwd(dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=ctx.dt_softplus, dt_limit=ctx.dt_limit)
return dx, ddt, dA, dB, dC, None, dD, dz, ddt_bias, dinitial_states, None, None, None, None, None, None
def mamba_chunk_scan_combined(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, initial_states=None, seq_idx=None, cu_seqlens=None, dt_softplus=False, dt_limit=(0.0, float("inf")), return_final_states=False, return_varlen_states=False):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads)
A: (nheads)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
chunk_size: int
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,)
initial_states: (batch, nheads, headdim, dstate)
seq_idx: (batch, seqlen)
cu_seqlens: (num_sequences + 1) or None, only used if return_varlen_states is True
dt_softplus: Whether to apply softplus to dt
Return:
out: (batch, seqlen, nheads, headdim)
"""
return MambaChunkScanCombinedFn.apply(x, dt, A, B, C, chunk_size, D, z, dt_bias, initial_states, seq_idx, cu_seqlens, dt_softplus, dt_limit, return_final_states, return_varlen_states)
def mamba_chunk_scan(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, dt_softplus=False):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads)
A: (nheads)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,)
Return:
out: (batch, seqlen, nheads, headdim)
"""
batch, seqlen, nheads, headdim = x.shape
dstate = B.shape[-1]
if seqlen % chunk_size != 0:
dt = F.pad(dt, (0, 0, 0, chunk_size - seqlen % chunk_size))
dt = rearrange(dt, "b (c l) h -> b h c l", l=chunk_size)
dt = dt.float() # We want high precision for this before cumsum
if dt_bias is not None:
dt = dt + rearrange(dt_bias, "h -> h 1 1")
if dt_softplus:
dt = F.softplus(dt)
dA = dt * rearrange(A, "h -> h 1 1")
dA = dt * rearrange(A, "h -> h 1 1")
dA_cumsum = torch.cumsum(dA, dim=-1)
# 1. Compute the state for each chunk
states = chunk_state(B, x, dt, dA_cumsum, states_in_fp32=True)
# 2. Pass the state to all the chunks by weighted cumsum.
states = rearrange(state_passing(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1])[0],
"... (p n) -> ... p n", n=dstate)
# 3. Compute the output for each chunk
out = chunk_scan(B, C, x, dt, dA_cumsum, states, D=D, z=z)
return out
def ssd_chunk_scan_combined_ref(x, dt, A, B, C, chunk_size, D=None, z=None, dt_bias=None, dt_softplus=False):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads)
A: (nheads)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,)
Return:
out: (batch, seqlen, nheads, headdim)
"""
batch, seqlen, nheads, headdim = x.shape
dstate = B.shape[-1]
if seqlen % chunk_size != 0:
dt = F.pad(dt, (0, 0, 0, chunk_size - seqlen % chunk_size))
dt = rearrange(dt, "b (c l) h -> b h c l", l=chunk_size)
dt = dt.float() # We want high precision for this before cumsum
if dt_bias is not None:
dt = dt + rearrange(dt_bias, "h -> h 1 1")
if dt_softplus:
dt = F.softplus(dt)
dA = dt * rearrange(A, "h -> h 1 1")
dA_cumsum = torch.cumsum(dA, dim=-1)
# 1. Compute the state for each chunk
states = chunk_state_ref(B, x, dt, dA_cumsum)
states_dtype = states.dtype
if states.dtype not in [torch.float32, torch.float64]:
states = states.to(torch.float32)
# 2. Pass the state to all the chunks by weighted cumsum.
# state_passing_ref is much less numerically stable
states = rearrange(state_passing_ref(rearrange(states, "... p n -> ... (p n)"), dA_cumsum[:, :, :, -1])[0],
"... (p n) -> ... p n", n=dstate)
states = states.to(states_dtype)
# 3. Compute the output for each chunk
out = chunk_scan_ref(B, C, x, dt, dA_cumsum, states, D=D, z=z)
return out
def ssd_selective_scan(x, dt, A, B, C, D=None, z=None, dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf"))):
"""
Argument:
x: (batch, seqlen, nheads, headdim)
dt: (batch, seqlen, nheads) or (batch, seqlen, nheads, headdim)
A: (nheads) or (dim, dstate)
B: (batch, seqlen, ngroups, dstate)
C: (batch, seqlen, ngroups, dstate)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, nheads, headdim)
dt_bias: (nheads,) or (nheads, headdim)
Return:
out: (batch, seqlen, nheads, headdim)
"""
from mamba_ssm.ops.selective_scan_interface import selective_scan_fn
batch, seqlen, nheads, headdim = x.shape
_, _, ngroups, dstate = B.shape
x = rearrange(x, "b l h p -> b (h p) l")
if dt.dim() == 3:
dt = repeat(dt, "b l h -> b l h p", p=headdim)
dt = rearrange(dt, "b l h p -> b (h p) l")
if A.dim() == 1:
A = repeat(A, "h -> (h p) n", p=headdim, n=dstate).to(dtype=torch.float32)
else:
A = A.to(dtype=torch.float32)
B = rearrange(B, "b l g n -> b g n l")
C = rearrange(C, "b l g n -> b g n l")
if D is not None:
if D.dim() == 2:
D = rearrange(D, "h p -> (h p)")
else:
D = repeat(D, "h -> (h p)", p=headdim)
if z is not None:
z = rearrange(z, "b l h p -> b (h p) l")
if dt_bias is not None:
if dt_bias.dim() == 1:
dt_bias = repeat(dt_bias, "h -> h p", p=headdim)
dt_bias = rearrange(dt_bias, "h p -> (h p)")
if dt_limit != (0.0, float("inf")):
if dt_bias is not None:
dt = dt + rearrange(dt_bias, "d -> d 1")
if dt_softplus:
dt = F.softplus(dt)
dt = dt.clamp(min=dt_limit[0], max=dt_limit[1]).to(x.dtype)
dt_bias = None
dt_softplus = None
out = selective_scan_fn(x, dt, A, B, C, D=D, z=z, delta_bias=dt_bias, delta_softplus=dt_softplus)
return rearrange(out, "b (h p) l -> b l h p", p=headdim)
def mamba_conv1d_scan_ref(xBC, conv1d_weight, conv1d_bias, dt, A, chunk_size, D=None, z=None,
dt_bias=None, dt_softplus=False, dt_limit=(0.0, float("inf")),
activation="silu", headdim=None, ngroups=1):
"""
Argument:
xBC: (batch, seqlen, dim + 2 * ngroups * dstate) where dim == nheads * headdim
conv1d_weight: (dim + 2 * ngroups * dstate, width)
conv1d_bias: (dim + 2 * ngroups * dstate,)
dt: (batch, seqlen, nheads) or (batch, seqlen, nheads, headdim)
A: (nheads)
D: (nheads, headdim) or (nheads,)
z: (batch, seqlen, dim)
dt_bias: (nheads) or (nheads, headdim)
headdim: if D is 1D and z is None, headdim must be passed in
Return:
out: (batch, seqlen, dim)
"""
batch, seqlen, nheads = dt.shape[:3]
assert nheads % ngroups == 0
if z is not None:
dim = z.shape[-1]
assert dim % nheads == 0
headdim = dim // nheads
else:
if D.dim() == 1:
assert headdim is not None
else:
headdim = D.shape[1]
dim = nheads * headdim
xBC = rearrange(causal_conv1d_fn(rearrange(xBC, "b s d -> b d s"), conv1d_weight, conv1d_bias, activation=activation),
"b d s -> b s d")
dstate = (xBC.shape[-1] - dim) // ngroups // 2
x, B, C = torch.split(xBC, [dim, ngroups * dstate, ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ngroups)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads) if z is not None else None
out = ssd_selective_scan(x, dt.to(x.dtype), A, B, C, D=D.float(), z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, dt_limit=dt_limit)
return rearrange(out, "b s h p -> b s (h p)")
class MambaSplitConv1dScanCombinedFn(torch.autograd.Function):
@staticmethod
@custom_fwd
def forward(ctx, zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, initial_states=None, seq_idx=None, dt_limit=(0.0, float("inf")), return_final_states=False, activation="silu",
rmsnorm_weight=None, rmsnorm_eps=1e-6, outproj_weight=None, outproj_bias=None, headdim=None,
ngroups=1, norm_before_gate=True):
assert activation in [None, "silu", "swish"]
if D.dim() == 1:
assert headdim is not None
nheads, = D.shape
else:
nheads, headdim = D.shape
batch, seqlen, _ = zxbcdt.shape
dim = nheads * headdim
assert nheads % ngroups == 0
dstate = (conv1d_weight.shape[0] - dim) // ngroups // 2
d_nonssm = (zxbcdt.shape[-1] - 2 * dim - 2 * ngroups * dstate - nheads) // 2
assert d_nonssm >= 0
assert zxbcdt.shape == (batch, seqlen, 2 * d_nonssm + 2 * dim + 2 * ngroups * dstate + nheads)
assert dt_bias.shape == (nheads,)
assert A.shape == (nheads,)
zx0, z, xBC, dt = torch.split(zxbcdt, [2 * d_nonssm, dim, dim + ngroups * dstate * 2, nheads], dim=-1)
seq_idx = seq_idx.contiguous() if seq_idx is not None else None
xBC_conv = rearrange(
causal_conv1d_cuda.causal_conv1d_fwd(rearrange(xBC, "b s d -> b d s"),
conv1d_weight, conv1d_bias, seq_idx, None, None, activation in ["silu", "swish"]),
"b d s -> b s d"
)
x, B, C = torch.split(xBC_conv, [dim, ngroups * dstate, ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ngroups)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads) if z is not None else None
if rmsnorm_weight is None:
out, out_x, dt_out, dA_cumsum, states, final_states = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size=chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=dt_limit)
out = rearrange(out, "b s h p -> b s (h p)")
rstd = None
if d_nonssm > 0:
out = torch.cat([_swiglu_fwd(zx0), out], dim=-1)
else:
out_x, _, dt_out, dA_cumsum, states, final_states = _mamba_chunk_scan_combined_fwd(x, dt, A, B, C, chunk_size=chunk_size, D=D, z=None, dt_bias=dt_bias, initial_states=initial_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=dt_limit)
# reshape input data into 2D tensor
x_rms = rearrange(out_x, "b s h p -> (b s) (h p)")
z_rms = rearrange(z, "b s h p -> (b s) (h p)")
rmsnorm_weight = rmsnorm_weight.contiguous()
if d_nonssm == 0:
out = None
else:
out01 = torch.empty((batch, seqlen, d_nonssm + dim), dtype=x_rms.dtype, device=x_rms.device)
out = rearrange(out01[..., d_nonssm:], "b s d -> (b s) d")
_swiglu_fwd(zx0, out=out01[..., :d_nonssm])
out, _, rstd = _layer_norm_fwd(x_rms, rmsnorm_weight, None, rmsnorm_eps, z_rms, out=out,
group_size=dim // ngroups,
norm_before_gate=norm_before_gate, is_rms_norm=True)
if d_nonssm == 0:
out = rearrange(out, "(b s) d -> b s d", b=batch)
else:
out = out01
ctx.outproj_weight_dtype = outproj_weight.dtype if outproj_weight is not None else None
if outproj_weight is not None:
if torch.is_autocast_enabled():
dtype = torch.get_autocast_gpu_dtype()
out, outproj_weight = out.to(dtype), outproj_weight.to(dtype)
outproj_bias = outproj_bias.to(dtype) if outproj_bias is not None else None
out = F.linear(out, outproj_weight, outproj_bias)
else:
assert outproj_bias is None
ctx.save_for_backward(zxbcdt, conv1d_weight, conv1d_bias,
out_x, A, D, dt_bias, initial_states, seq_idx, rmsnorm_weight, rstd, outproj_weight, outproj_bias)
ctx.dt_limit = dt_limit
ctx.return_final_states = return_final_states
ctx.activation = activation
ctx.rmsnorm_eps = rmsnorm_eps
ctx.norm_before_gate = norm_before_gate
ctx.chunk_size = chunk_size
ctx.headdim = headdim
ctx.ngroups = ngroups
return out if not return_final_states else (out, final_states)
@staticmethod
@custom_bwd
def backward(ctx, dout, *args):
zxbcdt, conv1d_weight, conv1d_bias, out, A, D, dt_bias, initial_states, seq_idx, rmsnorm_weight, rstd, outproj_weight, outproj_bias = ctx.saved_tensors
dfinal_states = args[0] if ctx.return_final_states else None
headdim = ctx.headdim
nheads = D.shape[0]
dim = nheads * headdim
assert nheads % ctx.ngroups == 0
dstate = (conv1d_weight.shape[0] - dim) // ctx.ngroups // 2
d_nonssm = (zxbcdt.shape[-1] - 2 * dim - 2 * ctx.ngroups * dstate - nheads) // 2
assert d_nonssm >= 0
recompute_output = outproj_weight is not None
if recompute_output:
out_recompute = torch.empty(*out.shape[:2], d_nonssm + dim, device=out.device, dtype=out.dtype)
out0_recompute, out1_recompute = out_recompute.split([d_nonssm, dim], dim=-1)
zx0, z, xBC, dt = torch.split(zxbcdt, [2 * d_nonssm, dim, dim + 2 * ctx.ngroups * dstate, nheads], dim=-1)
# Recompute x, B, C
xBC_conv = rearrange(
causal_conv1d_cuda.causal_conv1d_fwd(rearrange(xBC, "b s d -> b d s"),
conv1d_weight, conv1d_bias, seq_idx, None, None, ctx.activation in ["silu", "swish"]),
"b d s -> b s d"
)
x, B, C = torch.split(xBC_conv, [dim, ctx.ngroups * dstate, ctx.ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ctx.ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ctx.ngroups)
dzxbcdt = torch.empty_like(zxbcdt)
dzx0, dz, dxBC_given, ddt_given = torch.split(dzxbcdt, [2 * d_nonssm, dim, dim + 2 * ctx.ngroups * dstate, nheads], dim=-1)
dxBC = torch.empty_like(xBC)
dx, dB, dC = torch.split(dxBC, [dim, ctx.ngroups * dstate, ctx.ngroups * dstate], dim=-1)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads)
dx = rearrange(dx, "b l (h p) -> b l h p", h=nheads)
dB = rearrange(dB, "b l (g n) -> b l g n", g=ctx.ngroups)
dC = rearrange(dC, "b l (g n) -> b l g n", g=ctx.ngroups)
if outproj_weight is not None:
dout_og = dout
dout = F.linear(dout, outproj_weight.t())
if d_nonssm > 0:
dout0, dout = dout.split([d_nonssm, dim], dim=-1)
_swiglu_bwd(zx0, dout0, dxy=dzx0, recompute_output=True, out=out0_recompute)
dout = rearrange(dout, "b s (h p) -> b s h p", p=headdim)
if rmsnorm_weight is None:
dz = rearrange(dz, "b l (h p) -> b l h p", h=nheads)
dx, ddt, dA, dB, dC, dD, dz, ddt_bias, dinitial_states, *rest = _mamba_chunk_scan_combined_bwd(
dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=z, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=ctx.dt_limit, dx=dx, ddt=ddt_given, dB=dB, dC=dC, dz=dz, recompute_output=recompute_output
)
out_for_linear = rearrange(rest[0], "b s h p -> b s (h p)") if recompute_output else None
drmsnorm_weight = None
else:
batch = dout.shape[0]
dy_rms = rearrange(dout, "b s h p -> (b s) (h p)")
dz = rearrange(dz, "b l d -> (b l) d")
x_rms = rearrange(out, "b s h p -> (b s) (h p)")
z_rms = rearrange(z, "b s h p -> (b s) (h p)")
out1_recompute = rearrange(out1_recompute, "b s d -> (b s) d") if recompute_output else None
dout, drmsnorm_weight, _, dz, *rest = _layer_norm_bwd(dy_rms, x_rms, rmsnorm_weight, None, ctx.rmsnorm_eps, None, rstd, z_rms, norm_before_gate=ctx.norm_before_gate, is_rms_norm=True, recompute_output=recompute_output, dz=dz, out=out1_recompute if recompute_output else None)
out_for_linear = out_recompute if recompute_output else None
dout = rearrange(dout, "(b s) (h p) -> b s h p", b=batch, p=headdim)
dx, ddt, dA, dB, dC, dD, _, ddt_bias, dinitial_states = _mamba_chunk_scan_combined_bwd(
dout, x, dt, A, B, C, out, ctx.chunk_size, D=D, z=None, dt_bias=dt_bias, initial_states=initial_states, dfinal_states=dfinal_states, seq_idx=seq_idx, dt_softplus=True, dt_limit=ctx.dt_limit, dx=dx, ddt=ddt_given, dB=dB, dC=dC
)
if outproj_weight is not None:
doutproj_weight = torch.einsum("bso,bsd->od", dout_og, out_for_linear)
doutproj_bias = dout_og.sum(dim=(0, 1)) if outproj_bias is not None else None
else:
doutproj_weight, doutproj_bias = None, None
dxBC_given = rearrange(dxBC_given, "b s d -> b d s")
dxBC_given, dweight, dbias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
rearrange(xBC, "b s d -> b d s"), conv1d_weight, conv1d_bias,
rearrange(dxBC, "b s d -> b d s"), seq_idx, None, None, dxBC_given, False, ctx.activation in ["silu", "swish"]
)
dxBC_given = rearrange(dxBC_given, "b d s -> b s d")
return dzxbcdt, dweight, dbias, ddt_bias, dA, dD, None, dinitial_states, None, None, None, None, drmsnorm_weight, None, doutproj_weight, doutproj_bias, None, None, None
def mamba_split_conv1d_scan_combined(zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, initial_states=None, seq_idx=None, dt_limit=(0.0, float("inf")), return_final_states=False, activation="silu", rmsnorm_weight=None, rmsnorm_eps=1e-6, outproj_weight=None, outproj_bias=None, headdim=None, ngroups=1, norm_before_gate=True):
"""
Argument:
zxbcdt: (batch, seqlen, 2 * dim + 2 * ngroups * dstate + nheads) where dim == nheads * headdim
conv1d_weight: (dim + 2 * ngroups * dstate, width)
conv1d_bias: (dim + 2 * ngroups * dstate,)
dt_bias: (nheads,)
A: (nheads)
D: (nheads, headdim) or (nheads,)
initial_states: (batch, nheads, headdim, dstate)
seq_idx: (batch, seqlen), int32
rmsnorm_weight: (dim,)
outproj_weight: (out_dim, dim)
outproj_bias: (out_dim,)
headdim: if D is 1D, headdim must be passed in
norm_before_gate: if True, we do RMSNorm(x) * F.silu(z). If False, we do RMSNorm(x * F.silu(z))
Return:
out: (batch, seqlen, dim)
"""
return MambaSplitConv1dScanCombinedFn.apply(zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, initial_states, seq_idx, dt_limit, return_final_states, activation, rmsnorm_weight, rmsnorm_eps, outproj_weight, outproj_bias, headdim, ngroups, norm_before_gate)
def mamba_split_conv1d_scan_ref(zxbcdt, conv1d_weight, conv1d_bias, dt_bias, A, D, chunk_size, dt_limit=(0.0, float("inf")), activation="silu", rmsnorm_weight=None, rmsnorm_eps=1e-6, outproj_weight=None, outproj_bias=None, headdim=None, ngroups=1, norm_before_gate=True):
"""
Argument:
zxbcdt: (batch, seqlen, 2 * dim + 2 * ngroups * dstate + nheads) where dim == nheads * headdim
conv1d_weight: (dim + 2 * ngroups * dstate, width)
conv1d_bias: (dim + 2 * ngroups * dstate,)
dt_bias: (nheads,)
A: (nheads)
D: (nheads, headdim) or (nheads,)
rmsnorm_weight: (dim,)
outproj_weight: (out_dim, dim)
outproj_bias: (out_dim,)
headdim: if D is 1D, headdim must be passed in
norm_before_gate: if True, we do RMSNorm(x) * F.silu(z). If False, we do RMSNorm(x * F.silu(z))
Return:
out: (batch, seqlen, dim)
"""
if D.dim() == 1:
assert headdim is not None
nheads, = D.shape
else:
nheads, headdim = D.shape
assert nheads % ngroups == 0
batch, seqlen, _ = zxbcdt.shape
dim = nheads * headdim
dstate = (zxbcdt.shape[-1] - 2 * dim - nheads) // ngroups // 2
assert zxbcdt.shape == (batch, seqlen, 2 * dim + 2 * ngroups * dstate + nheads)
assert dt_bias.shape == (nheads,)
assert A.shape == (nheads,)
if rmsnorm_weight is not None:
assert rmsnorm_weight.shape == (dim,)
z, xBC, dt = torch.split(zxbcdt, [dim, dim + 2 * ngroups * dstate, nheads], dim=-1)
xBC = rearrange(causal_conv1d_fn(rearrange(xBC, "b s d -> b d s"), conv1d_weight, conv1d_bias, activation=activation),
"b d s -> b s d")
x, B, C = torch.split(xBC, [dim, ngroups * dstate, ngroups * dstate], dim=-1)
x = rearrange(x, "b l (h p) -> b l h p", h=nheads)
B = rearrange(B, "b l (g n) -> b l g n", g=ngroups)
C = rearrange(C, "b l (g n) -> b l g n", g=ngroups)
z = rearrange(z, "b l (h p) -> b l h p", h=nheads)
out = ssd_selective_scan(x, dt.to(x.dtype), A, B, C, D=D.float(),
z=z if rmsnorm_weight is None else None, dt_bias=dt_bias, dt_softplus=True, dt_limit=dt_limit)
out = rearrange(out, "b s h p -> b s (h p)")
if rmsnorm_weight is not None:
out = rmsnorm_fn(out, rmsnorm_weight, None, z=rearrange(z, "b l h p -> b l (h p)"), eps=rmsnorm_eps,
norm_before_gate=norm_before_gate)
if outproj_weight is not None:
out = F.linear(out, outproj_weight, outproj_bias)
return out
|