File size: 5,169 Bytes
306b4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2024, Tri Dao, Albert Gu.

import torch

import triton
import triton.language as tl


@triton.autotune(
    configs=[
        triton.Config({'BLOCK_N': 32}),
        triton.Config({'BLOCK_N': 64}),
        triton.Config({'BLOCK_N': 128}),
        triton.Config({'BLOCK_N': 256}),
        triton.Config({'BLOCK_N': 512}),
        triton.Config({'BLOCK_N': 1024}),
    ],
    key=['ncols'],
)
@triton.jit
def _swiglu_fwd_kernel(
    X,
    Y,
    OUT,
    stride_x_row,  # how much to increase the pointer when moving by 1 row
    stride_y_row,
    stride_out_row,
    ncols,
    BLOCK_N: tl.constexpr,
):
    # Map the program id to the row of X and Y it should compute.
    row = tl.program_id(0)
    start_col = tl.program_id(1) * BLOCK_N
    X += row * stride_x_row
    Y += row * stride_y_row
    OUT += row * stride_out_row
    cols = start_col + tl.arange(0, BLOCK_N)
    x = tl.load(X + cols, mask=cols < ncols, other=0.).to(tl.float32)
    y = tl.load(Y + cols, mask=cols < ncols, other=0.).to(tl.float32)
    out = x * tl.sigmoid(x) * y
    tl.store(OUT + cols, out, mask=cols < ncols)


def _swiglu_fwd(xy, out=None):
    if xy.stride(-1) != 1:
        xy = xy.contiguous()
    batch_shape = xy.shape[:-1]
    xy = xy.reshape(-1, xy.shape[-1])
    x, y = xy.chunk(2, dim=-1)
    if out is None:
        out = torch.empty_like(x)
    else:
        out = out.reshape(-1, out.shape[-1])
        assert out.shape == x.shape
    assert out.stride(-1) == 1
    M, N = x.shape
    grid = lambda META: (M, triton.cdiv(N, META['BLOCK_N']))
    with torch.cuda.device(x.device.index):
        _swiglu_fwd_kernel[grid](x, y, out, x.stride(0), y.stride(0), out.stride(0), N)
    return out.reshape(*batch_shape, out.shape[-1])


@triton.autotune(
    configs=[
        triton.Config({'BLOCK_N': 32}),
        triton.Config({'BLOCK_N': 64}),
        triton.Config({'BLOCK_N': 128}),
        triton.Config({'BLOCK_N': 256}),
        triton.Config({'BLOCK_N': 512}),
        triton.Config({'BLOCK_N': 1024}),
    ],
    key=['ncols'],
)
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["OUT"] is not None})
@triton.jit
def _swiglu_bwd_kernel(
    X,
    Y,
    DOUT,
    OUT,
    DX,
    DY,
    stride_x_row,  # how much to increase the pointer when moving by 1 row
    stride_y_row,
    stride_dout_row,
    stride_out_row,
    stride_dx_row,
    stride_dy_row,
    ncols,
    BLOCK_N: tl.constexpr,
    RECOMPUTE_OUTPUT: tl.constexpr,
):
    # Map the program id to the row of X and Y it should compute.
    row = tl.program_id(0)
    start_col = tl.program_id(1) * BLOCK_N
    X += row * stride_x_row
    Y += row * stride_y_row
    DOUT += row * stride_dout_row
    if RECOMPUTE_OUTPUT:
        OUT += row * stride_out_row
    DX += row * stride_dx_row
    DY += row * stride_dy_row
    cols = start_col + tl.arange(0, BLOCK_N)
    x = tl.load(X + cols, mask=cols < ncols, other=0.).to(tl.float32)
    y = tl.load(Y + cols, mask=cols < ncols, other=0.).to(tl.float32)
    dout = tl.load(DOUT + cols, mask=cols < ncols, other=0.).to(tl.float32)
    x_sigmoid = tl.sigmoid(x)
    dx = x_sigmoid * (1 + x * (1 - x_sigmoid)) * y * dout
    dy = x * x_sigmoid * dout
    tl.store(DX + cols, dx, mask=cols < ncols)
    tl.store(DY + cols, dy, mask=cols < ncols)
    if RECOMPUTE_OUTPUT:
        out = x * x_sigmoid * y
        tl.store(OUT + cols, out, mask=cols < ncols)


def _swiglu_bwd(xy, dout, dxy=None, recompute_output=False, out=None):
    if xy.stride(-1) != 1:
        xy = xy.contiguous()
    if dout.stride(-1) != 1:
        dout = dout.contiguous()
    batch_shape = xy.shape[:-1]
    xy = xy.reshape(-1, xy.shape[-1])
    x, y = xy.chunk(2, dim=-1)
    dout = dout.reshape(-1, dout.shape[-1])
    assert dout.shape == x.shape
    if dxy is None:
        dxy = torch.empty_like(xy)
    else:
        dxy = dxy.reshape(-1, dxy.shape[-1])
        assert dxy.shape == xy.shape
    dx, dy = dxy.chunk(2, dim=-1)
    assert dx.stride(-1) == 1
    assert dy.stride(-1) == 1
    if recompute_output:
        if out is None:
            out = torch.empty_like(x)
        else:
            out = out.reshape(-1, out.shape[-1])
            assert out.shape == x.shape
        assert out.stride(-1) == 1
    M, N = x.shape
    grid = lambda META: (M, triton.cdiv(N, META['BLOCK_N']))
    with torch.cuda.device(x.device.index):
        _swiglu_bwd_kernel[grid](x, y, dout, out if recompute_output else None, dx, dy,
                                 x.stride(0), y.stride(0), dout.stride(0),
                                 out.stride(0) if recompute_output else 0,
                                 dx.stride(0), dy.stride(0),
                                 N)
    if not recompute_output:
        return dxy.reshape(*batch_shape, dxy.shape[-1])
    else:
        return dxy.reshape(*batch_shape, dxy.shape[-1]), out.reshape(*batch_shape, out.shape[-1])


class SwiGLU(torch.autograd.Function):

    @staticmethod
    def forward(ctx, xy):
        ctx.save_for_backward(xy)
        return _swiglu_fwd(xy)

    @staticmethod
    def backward(ctx, dout):
        xy, = ctx.saved_tensors
        return _swiglu_bwd(xy, dout)


swiglu = SwiGLU.apply