Spaces:
Running
Running
File size: 17,478 Bytes
306b4ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
# Copyright (c) 2024, Tri Dao, Albert Gu.
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_fn, causal_conv1d_update = None, None
try:
from causal_conv1d.causal_conv1d_varlen import causal_conv1d_varlen_states
except ImportError:
causal_conv1d_varlen_states = None
try:
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
except ImportError:
selective_state_update = None
from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
from mamba_ssm.distributed.tensor_parallel import ColumnParallelLinear, RowParallelLinear
from mamba_ssm.distributed.distributed_utils import all_reduce, reduce_scatter
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.ssd_combined import mamba_split_conv1d_scan_combined
from huggingface_hub import PyTorchModelHubMixin
class Mamba2(nn.Module, PyTorchModelHubMixin):
def __init__(
self,
d_model,
d_state=128,
d_conv=4,
conv_init=None,
expand=2,
headdim=64,
d_ssm=None, # If not None, we only apply SSM on this many dimensions, the rest uses gated MLP
ngroups=1,
A_init_range=(1, 16),
D_has_hdim=False,
rmsnorm=True,
norm_before_gate=False,
dt_min=0.001,
dt_max=0.1,
dt_init_floor=1e-4,
dt_limit=(0.0, float("inf")),
bias=False,
conv_bias=True,
# Fused kernel and sharding options
chunk_size=256,
use_mem_eff_path=True,
layer_idx=None, # Absorb kwarg for general module
process_group=None,
sequence_parallel=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.d_model = d_model
self.d_state = d_state
self.d_conv = d_conv
self.conv_init = conv_init
self.expand = expand
self.process_group = process_group
self.sequence_parallel = sequence_parallel
self.world_size = 1 if process_group is None else process_group.size()
self.local_rank = 0 if process_group is None else process_group.rank()
self.d_inner = (self.expand * self.d_model) // self.world_size
assert self.d_inner * self.world_size == self.expand * self.d_model
self.headdim = headdim
self.d_ssm = self.d_inner if d_ssm is None else d_ssm // self.world_size
assert ngroups % self.world_size == 0
self.ngroups = ngroups // self.world_size
assert self.d_ssm % self.headdim == 0
self.nheads = self.d_ssm // self.headdim
self.D_has_hdim = D_has_hdim
self.rmsnorm = rmsnorm
self.norm_before_gate = norm_before_gate
self.dt_limit = dt_limit
self.activation = "silu"
self.chunk_size = chunk_size
self.use_mem_eff_path = use_mem_eff_path
self.layer_idx = layer_idx
# Order: [z, x, B, C, dt]
d_in_proj = 2 * self.d_inner + 2 * self.ngroups * self.d_state + self.nheads
if self.process_group is None:
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=bias, **factory_kwargs)
else:
self.in_proj = ColumnParallelLinear(self.d_model, d_in_proj * self.world_size, bias=bias,
process_group=self.process_group, sequence_parallel=self.sequence_parallel,
**factory_kwargs)
conv_dim = self.d_ssm + 2 * self.ngroups * self.d_state
self.conv1d = nn.Conv1d(
in_channels=conv_dim,
out_channels=conv_dim,
bias=conv_bias,
kernel_size=d_conv,
groups=conv_dim,
padding=d_conv - 1,
**factory_kwargs,
)
if self.conv_init is not None:
nn.init.uniform_(self.conv1d.weight, -self.conv_init, self.conv_init)
self.act = nn.SiLU()
# Initialize log dt bias
dt = torch.exp(
torch.rand(self.nheads, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
+ math.log(dt_min)
)
dt = torch.clamp(dt, min=dt_init_floor)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
self.dt_bias = nn.Parameter(inv_dt)
# Just to be explicit. Without this we already don't put wd on dt_bias because of the check
# name.endswith("bias") in param_grouping.py
self.dt_bias._no_weight_decay = True
assert A_init_range[0] > 0 and A_init_range[1] >= A_init_range[0]
A = torch.empty(self.nheads, dtype=torch.float32, device=device).uniform_(*A_init_range)
A_log = torch.log(A).to(dtype=dtype)
self.A_log = nn.Parameter(A_log)
self.A_log._no_weight_decay = True
# D "skip" parameter
self.D = nn.Parameter(torch.ones(self.d_ssm if self.D_has_hdim else self.nheads, device=device))
self.D._no_weight_decay = True
if self.rmsnorm:
assert RMSNormGated is not None
self.norm = RMSNormGated(self.d_ssm, eps=1e-5, norm_before_gate=self.norm_before_gate,
group_size=self.d_ssm // ngroups, **factory_kwargs)
if self.process_group is None:
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
else:
self.out_proj = RowParallelLinear(self.d_inner * self.world_size, self.d_model, bias=bias,
process_group=self.process_group, sequence_parallel=self.sequence_parallel,
**factory_kwargs)
def forward(self, u, seqlen=None, seq_idx=None, cu_seqlens=None, inference_params=None):
"""
u: (batch, seqlen, hidden_dim) if seqlen=None.
If seqlen is not None, u is (batch * seqlen, hidden_dim). This is so that when we
split u during sequence parallel, we split the batch * seqlen dimension
(in case batch is small).
Returns: same shape as u
"""
seqlen_og = seqlen
if seqlen is None:
batch, seqlen, dim = u.shape
else:
batch_seqlen, dim = u.shape
batch = batch_seqlen // seqlen
conv_state, ssm_state = None, None
if inference_params is not None:
inference_batch = cu_seqlens.shape[0] - 1 if cu_seqlens is not None else batch
conv_state, ssm_state = self._get_states_from_cache(inference_params, inference_batch)
if inference_params.seqlen_offset > 0:
# The states are updated inplace
out, _, _ = self.step(u, conv_state, ssm_state)
return out
zxbcdt = self.in_proj(u) # (B, L, d_in_proj) or (B * L, d_in_proj)
if seqlen_og is not None:
zxbcdt = rearrange(zxbcdt, "(b l) d -> b l d", l=seqlen)
# If the model is loaded in fp16, without the .float() here, A might be -inf
A = -torch.exp(self.A_log.float()) # (nheads) or (d_inner, d_state)
dt_limit_kwargs = {} if self.dt_limit == (0.0, float("inf")) else dict(dt_limit=self.dt_limit)
if self.use_mem_eff_path and inference_params is None:
out = mamba_split_conv1d_scan_combined(
zxbcdt,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.dt_bias,
A,
D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
chunk_size=self.chunk_size,
seq_idx=seq_idx,
activation=self.activation,
rmsnorm_weight=self.norm.weight if self.rmsnorm else None,
rmsnorm_eps=self.norm.eps if self.rmsnorm else 1e-6,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=None if self.D_has_hdim else self.headdim,
ngroups=self.ngroups,
norm_before_gate=self.norm_before_gate,
**dt_limit_kwargs,
)
if seqlen_og is not None:
out = rearrange(out, "b l d -> (b l) d")
if self.process_group is not None:
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
out = reduce_fn(out, self.process_group)
else:
d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
z0, x0, z, xBC, dt = torch.split(
zxbcdt,
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
dim=-1
)
if conv_state is not None:
if cu_seqlens is None:
# If we just take xBC[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
xBC_t = rearrange(xBC, "b l d -> b d l")
conv_state.copy_(F.pad(xBC_t, (self.d_conv - xBC_t.shape[-1], 0))) # Update state (B D W)
else:
assert causal_conv1d_varlen_states is not None, "varlen inference requires causal_conv1d package"
assert batch == 1, "varlen inference only supports batch dimension 1"
conv_varlen_states = causal_conv1d_varlen_states(
xBC.squeeze(0), cu_seqlens, state_len=conv_state.shape[-1]
)
conv_state.copy_(conv_varlen_states)
assert self.activation in ["silu", "swish"]
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
assert seq_idx is None, "varlen conv1d requires the causal_conv1d package"
xBC = self.act(
self.conv1d(xBC.transpose(1, 2)).transpose(1, 2)[:, -(self.dconv - 1):]
) # (B, L, self.d_ssm + 2 * ngroups * d_state)
else:
xBC = causal_conv1d_fn(
xBC.transpose(1, 2),
rearrange(self.conv1d.weight, "d 1 w -> d w"),
bias=self.conv1d.bias,
activation=self.activation,
seq_idx=seq_idx,
).transpose(1, 2)
x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
y = mamba_chunk_scan_combined(
rearrange(x, "b l (h p) -> b l h p", p=self.headdim),
dt,
A,
rearrange(B, "b l (g n) -> b l g n", g=self.ngroups),
rearrange(C, "b l (g n) -> b l g n", g=self.ngroups),
chunk_size=self.chunk_size,
D=rearrange(self.D, "(h p) -> h p", p=self.headdim) if self.D_has_hdim else self.D,
z=rearrange(z, "b l (h p) -> b l h p", p=self.headdim) if not self.rmsnorm else None,
dt_bias=self.dt_bias,
dt_softplus=True,
seq_idx=seq_idx,
cu_seqlens=cu_seqlens,
**dt_limit_kwargs,
return_final_states=ssm_state is not None,
return_varlen_states=cu_seqlens is not None and inference_params is not None,
)
if ssm_state is not None:
y, last_state, *rest = y
if cu_seqlens is None:
ssm_state.copy_(last_state)
else:
varlen_states = rest[0]
ssm_state.copy_(varlen_states)
y = rearrange(y, "b l h p -> b l (h p)")
if self.rmsnorm:
y = self.norm(y, z)
if d_mlp > 0:
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
if seqlen_og is not None:
y = rearrange(y, "b l d -> (b l) d")
out = self.out_proj(y)
return out
def step(self, hidden_states, conv_state, ssm_state):
dtype = hidden_states.dtype
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
zxbcdt = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
d_mlp = (zxbcdt.shape[-1] - 2 * self.d_ssm - 2 * self.ngroups * self.d_state - self.nheads) // 2
z0, x0, z, xBC, dt = torch.split(
zxbcdt,
[d_mlp, d_mlp, self.d_ssm, self.d_ssm + 2 * self.ngroups * self.d_state, self.nheads],
dim=-1
)
# Conv step
if causal_conv1d_update is None:
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
conv_state[:, :, -1] = xBC
xBC = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
if self.conv1d.bias is not None:
xBC = xBC + self.conv1d.bias
xBC = self.act(xBC).to(dtype=dtype)
else:
xBC = causal_conv1d_update(
xBC,
conv_state,
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
self.activation,
)
x, B, C = torch.split(xBC, [self.d_ssm, self.ngroups * self.d_state, self.ngroups * self.d_state], dim=-1)
A = -torch.exp(self.A_log.float()) # (nheads,)
# SSM step
if selective_state_update is None:
assert self.ngroups == 1, "Only support ngroups=1 for this inference code path"
# Discretize A and B
dt = F.softplus(dt + self.dt_bias.to(dtype=dt.dtype)) # (batch, nheads)
dA = torch.exp(dt * A) # (batch, nheads)
x = rearrange(x, "b (h p) -> b h p", p=self.headdim)
dBx = torch.einsum("bh,bn,bhp->bhpn", dt, B, x)
ssm_state.copy_(ssm_state * rearrange(dA, "b h -> b h 1 1") + dBx)
y = torch.einsum("bhpn,bn->bhp", ssm_state.to(dtype), C)
y = y + rearrange(self.D.to(dtype), "h -> h 1") * x
y = rearrange(y, "b h p -> b (h p)")
if not self.rmsnorm:
y = y * self.act(z) # (B D)
else:
A = repeat(A, "h -> h p n", p=self.headdim, n=self.d_state).to(dtype=torch.float32)
dt = repeat(dt, "b h -> b h p", p=self.headdim)
dt_bias = repeat(self.dt_bias, "h -> h p", p=self.headdim)
D = repeat(self.D, "h -> h p", p=self.headdim)
B = rearrange(B, "b (g n) -> b g n", g=self.ngroups)
C = rearrange(C, "b (g n) -> b g n", g=self.ngroups)
x_reshaped = rearrange(x, "b (h p) -> b h p", p=self.headdim)
if not self.rmsnorm:
z = rearrange(z, "b (h p) -> b h p", p=self.headdim)
y = selective_state_update(
ssm_state, x_reshaped, dt, A, B, C, D, z=z if not self.rmsnorm else None,
dt_bias=dt_bias, dt_softplus=True
)
y = rearrange(y, "b h p -> b (h p)")
if self.rmsnorm:
y = self.norm(y, z)
if d_mlp > 0:
y = torch.cat([F.silu(z0) * x0, y], dim=-1)
out = self.out_proj(y)
return out.unsqueeze(1), conv_state, ssm_state
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
device = self.out_proj.weight.device
conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
conv_state = torch.zeros(
batch_size, self.d_conv, self.conv1d.weight.shape[0], device=device, dtype=conv_dtype
).transpose(1, 2)
ssm_dtype = self.in_proj.weight.dtype if dtype is None else dtype
ssm_state = torch.zeros(
batch_size, self.nheads, self.headdim, self.d_state, device=device, dtype=ssm_dtype
)
return conv_state, ssm_state
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (batch_size,)
conv_state = torch.zeros(
batch_size,
self.d_conv,
self.conv1d.weight.shape[0],
device=self.conv1d.weight.device,
dtype=self.conv1d.weight.dtype,
).transpose(1, 2)
ssm_state = torch.zeros(
batch_size,
self.nheads,
self.headdim,
self.d_state,
device=self.in_proj.weight.device,
dtype=self.in_proj.weight.dtype,
)
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
else:
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
# TODO: What if batch size changes between generation, and we reuse the same states?
if initialize_states:
conv_state.zero_()
ssm_state.zero_()
return conv_state, ssm_state
|