import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer locally model_name = "mergekit-community/Anti-Qwen2.5-Coder-0.5B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) # Ensure the model runs on GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the conversation history for the model messages = [f"System: {system_message}"] for val in history: if val[0]: messages.append(f"User: {val[0]}") if val[1]: messages.append(f"Assistant: {val[1]}") messages.append(f"User: {message}") context = "\n".join(messages) # Tokenize input input_ids = tokenizer(context, return_tensors="pt", truncation=True, max_length=2048).input_ids.to(device) # Generate response output_ids = model.generate( input_ids, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, ) # Decode and yield response response = tokenizer.decode(output_ids[0][input_ids.shape[-1]:], skip_special_tokens=True) yield response # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()