import gradio as gr # This may be in the wrong spot def generate_outputs(user_prompt): report, recommendations, visualization = produce_outputs(combined_data) return report, recommendations, visualization from langchain.community import OpenAI from langchain.agents import TextProcessingAgent from dspy.agents import Agent # Base class for custom agent from dspy.utils import spawn_processes # Distributed computing utility # API key **ADD A KEY OR LOCAL LLM PATHWAY** openai = OpenAI(api_key="KEY") # User prompt intake was here but was folded into Gradio interface lines # Synthetic data generation (using Langchain's Text-Davinci-003 model for illustration) def generate_synthetic_data(prompt): response = openai.complete(prompt=prompt, engine="text-davinci-003", max_tokens=100) return response.choices[0].text # Custom data processing agent (inheriting from DSPy's Agent class) [TONIC PLEASE HELP LOL] class DataProcessingAgent(Agent): def __init__(self): super().__init__() def process(self, data): # Implement our custom data processing logic here (e.g., feature engineering) processed_data = data.lower().strip() return processed_data # Dynamic team composition (replace with logic for dynamic team creation) team = [ OpenAI(api_key="YOUR_OPENAI_API_KEY", engine="text-davinci-003"), # LLM agent DataProcessingAgent(), # Custom data processing agent ] # Prompt and data flow refinement message = f"{user_prompt}\n{generate_synthetic_data(f'Simulate scenarios for {user_prompt}')}" # Agents Group Chat Finite State Machine class GroupChatFSM: def __init__(self, teams_config): """ Initialize with configurations for teams. """ self.teams = {team_name: self.Team(team_agents) for team_name, team_agents in teams_config.items()} self.states = ["waiting", "interacting", "finalizing"] self.current_state = "waiting" def transition(self, to_state): """ Transition the state of the group chat based on FSM rules. """ if to_state in self.states: self.current_state = to_state else: raise ValueError("Invalid state transition attempted.") def broadcast(self, message): """ Broadcast a message to all teams based on the current FSM state. """ if self.current_state == "interacting": responses = {team_name: team.broadcast(message) for team_name, team in self.teams.items()} return responses else: return "The group chat is not in an interacting state." class Team: def __init__(self, agents_config): self.agents = [self.Agent(agent_config) for agent_config in agents_config] def broadcast(self, message): responses = [agent.respond(message) for agent in self.agents] return responses class Agent: def __init__(self, config): self.agent_name = config['agent_name'] self.api_key = config['api_key'] self.model = config['model'] def respond(self, message): return f"{self.agent_name} responding with {self.model}" # Multimedia output production (using Langchain's Text-Davinci-003 as default) because I don't know how to implement DSPy properly yet [TONIC PLEASE HELP LOL] def produce_outputs(processed_data): # Use Langchain for LLM-based analysis, recommendations, etc. Should this be updated to DSPy too? again:[TONIC PLEASE HELP LOL] analysis = openai.complete(prompt=f"Analyze {processed_data}", engine="text-davinci-003", max_tokens=200) recommendations = openai.complete(prompt=f"Recommend strategies based on {processed_data}", engine="text-davinci-003", max_tokens=100) # Replace with your visualization logic visualization = None return analysis.choices[0].text, recommendations.choices[0].text, visualization # Synth data generation using DSPy's distributed computing capabilities (taken partially from DSPY documentation) def generate_synthetic_data_distributed(prompt, num_nodes=3): # Spawn synthetic data generation processes across multiple nodes processes = [spawn_processes(generate_synthetic_data, [f"Simulate scenarios for {prompt}"]) for _ in range(num_nodes)] # Collect the results from each node synthetic_data_list = [] for process in processes: synthetic_data_list.extend(process.get()) # Combine the results and return the synthetic data return "\n".join(synthetic_data_list) # Generate synthetic data using DSPy's distributed computing capabilities. Again:[TONIC PLEASE HELP LOL] synthetic_data = generate_synthetic_data_distributed(user_prompt) # Generate outputs report, recommendations, visualization = produce_outputs(combined_data) # Print the results for testing pyrposes print("Report:") print(report) print("\nRecommendations:") print(recommendations) print("\nVisualization:") print(visualization) # Currently "None" due to placeholder 'visualization' # Moved from other gradio chunk near the top gr.Interface(fn=generate_outputs, inputs=user_prompt, outputs=["text", "text", "image"]).launch()