Last commit not found
import gradio as gr | |
# This may be in the wrong spot | |
def generate_outputs(user_prompt): | |
report, recommendations, visualization = produce_outputs(combined_data) | |
return report, recommendations, visualization | |
from langchain_openai.agents.agent_types import TextProcessingAgent | |
from dspy.agents import Agent # Base class for custom agent | |
from dspy.utils import spawn_processes # Distributed computing utility | |
# API key **ADD A KEY OR LOCAL LLM PATHWAY** | |
openai = OpenAI(api_key="KEY") | |
# User prompt intake was here but was folded into Gradio interface lines | |
# Synthetic data generation (using Langchain's Text-Davinci-003 model for illustration) | |
def generate_synthetic_data(prompt): | |
response = openai.complete(prompt=prompt, engine="text-davinci-003", max_tokens=100) | |
return response.choices[0].text | |
# Custom data processing agent (inheriting from DSPy's Agent class) [TONIC PLEASE HELP LOL] | |
class DataProcessingAgent(Agent): | |
def __init__(self): | |
super().__init__() | |
def process(self, data): | |
# Implement our custom data processing logic here (e.g., feature engineering) | |
processed_data = data.lower().strip() | |
return processed_data | |
# Dynamic team composition (replace with logic for dynamic team creation) | |
team = [ | |
OpenAI(api_key="YOUR_OPENAI_API_KEY", engine="text-davinci-003"), # LLM agent | |
DataProcessingAgent(), # Custom data processing agent | |
] | |
# Prompt and data flow refinement | |
message = f"{user_prompt}\n{generate_synthetic_data(f'Simulate scenarios for {user_prompt}')}" | |
# Agents Group Chat Finite State Machine | |
class GroupChatFSM: | |
def __init__(self, teams_config): | |
""" | |
Initialize with configurations for teams. | |
""" | |
self.teams = {team_name: self.Team(team_agents) for team_name, team_agents in teams_config.items()} | |
self.states = ["waiting", "interacting", "finalizing"] | |
self.current_state = "waiting" | |
def transition(self, to_state): | |
""" | |
Transition the state of the group chat based on FSM rules. | |
""" | |
if to_state in self.states: | |
self.current_state = to_state | |
else: | |
raise ValueError("Invalid state transition attempted.") | |
def broadcast(self, message): | |
""" | |
Broadcast a message to all teams based on the current FSM state. | |
""" | |
if self.current_state == "interacting": | |
responses = {team_name: team.broadcast(message) for team_name, team in self.teams.items()} | |
return responses | |
else: | |
return "The group chat is not in an interacting state." | |
class Team: | |
def __init__(self, agents_config): | |
self.agents = [self.Agent(agent_config) for agent_config in agents_config] | |
def broadcast(self, message): | |
responses = [agent.respond(message) for agent in self.agents] | |
return responses | |
class Agent: | |
def __init__(self, config): | |
self.agent_name = config['agent_name'] | |
self.api_key = config['api_key'] | |
self.model = config['model'] | |
def respond(self, message): | |
return f"{self.agent_name} responding with {self.model}" | |
# Multimedia output production (using Langchain's Text-Davinci-003 as default) because I don't know how to implement DSPy properly yet [TONIC PLEASE HELP LOL] | |
def produce_outputs(processed_data): | |
# Use Langchain for LLM-based analysis, recommendations, etc. Should this be updated to DSPy too? again:[TONIC PLEASE HELP LOL] | |
analysis = openai.complete(prompt=f"Analyze {processed_data}", engine="text-davinci-003", max_tokens=200) | |
recommendations = openai.complete(prompt=f"Recommend strategies based on {processed_data}", engine="text-davinci-003", max_tokens=100) | |
# Replace with your visualization logic | |
visualization = None | |
return analysis.choices[0].text, recommendations.choices[0].text, visualization | |
# Synth data generation using DSPy's distributed computing capabilities (taken partially from DSPY documentation) | |
def generate_synthetic_data_distributed(prompt, num_nodes=3): | |
# Spawn synthetic data generation processes across multiple nodes | |
processes = [spawn_processes(generate_synthetic_data, [f"Simulate scenarios for {prompt}"]) for _ in range(num_nodes)] | |
# Collect the results from each node | |
synthetic_data_list = [] | |
for process in processes: | |
synthetic_data_list.extend(process.get()) | |
# Combine the results and return the synthetic data | |
return "\n".join(synthetic_data_list) | |
# Generate synthetic data using DSPy's distributed computing capabilities. Again:[TONIC PLEASE HELP LOL] | |
synthetic_data = generate_synthetic_data_distributed(user_prompt) | |
# Generate outputs | |
report, recommendations, visualization = produce_outputs(combined_data) | |
# Print the results for testing pyrposes | |
print("Report:") | |
print(report) | |
print("\nRecommendations:") | |
print(recommendations) | |
print("\nVisualization:") | |
print(visualization) # Currently "None" due to placeholder 'visualization' | |
# Moved from other gradio chunk near the top | |
gr.Interface(fn=generate_outputs, inputs=user_prompt, outputs=["text", "text", "image"]).launch() | |