File size: 5,203 Bytes
bf63887
 
 
 
 
 
 
911fa42
302bb07
 
 
 
 
 
 
a88c1e5
302bb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9ea4f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302bb07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590bac
302bb07
 
 
 
 
6799d77
 
4cf81ca
a88c1e5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import gradio as gr

# This may be in the wrong spot
def generate_outputs(user_prompt):
    report, recommendations, visualization = produce_outputs(combined_data)
    return report, recommendations, visualization

from langchain_openai import TextProcessingAgent
from dspy.agents import Agent  # Base class for custom agent
from dspy.utils import spawn_processes  # Distributed computing utility

# API key **ADD A KEY OR LOCAL LLM PATHWAY**
openai = OpenAI(api_key="KEY")


# User prompt intake was here but was folded into Gradio interface lines


# Synthetic data generation (using Langchain's Text-Davinci-003 model for illustration)
def generate_synthetic_data(prompt):
    response = openai.complete(prompt=prompt, engine="text-davinci-003", max_tokens=100)
    return response.choices[0].text


# Custom data processing agent (inheriting from DSPy's Agent class)  [TONIC PLEASE HELP LOL]
class DataProcessingAgent(Agent):
    def __init__(self):
        super().__init__()

    def process(self, data):
        # Implement our custom data processing logic here (e.g., feature engineering)
        processed_data = data.lower().strip()
        return processed_data


# Dynamic team composition (replace with logic for dynamic team creation)
team = [
    OpenAI(api_key="YOUR_OPENAI_API_KEY", engine="text-davinci-003"),  # LLM agent
    DataProcessingAgent(),  # Custom data processing agent
]


# Prompt and data flow refinement
message = f"{user_prompt}\n{generate_synthetic_data(f'Simulate scenarios for {user_prompt}')}"

# Agents Group Chat Finite State Machine
class GroupChatFSM:
    def __init__(self, teams_config):
        """
        Initialize with configurations for teams.
        """
        self.teams = {team_name: self.Team(team_agents) for team_name, team_agents in teams_config.items()}
        self.states = ["waiting", "interacting", "finalizing"]
        self.current_state = "waiting"

    def transition(self, to_state):
        """
        Transition the state of the group chat based on FSM rules.
        """
        if to_state in self.states:
            self.current_state = to_state
        else:
            raise ValueError("Invalid state transition attempted.")

    def broadcast(self, message):
        """
        Broadcast a message to all teams based on the current FSM state.
        """
        if self.current_state == "interacting":
            responses = {team_name: team.broadcast(message) for team_name, team in self.teams.items()}
            return responses
        else:
            return "The group chat is not in an interacting state."

    class Team:
        def __init__(self, agents_config):
            self.agents = [self.Agent(agent_config) for agent_config in agents_config]

        def broadcast(self, message):
            responses = [agent.respond(message) for agent in self.agents]
            return responses

        class Agent:
            def __init__(self, config):
                self.agent_name = config['agent_name']
                self.api_key = config['api_key']
                self.model = config['model']

            def respond(self, message):
                return f"{self.agent_name} responding with {self.model}"

# Multimedia output production (using Langchain's Text-Davinci-003 as default) because I don't know how to implement DSPy properly yet  [TONIC PLEASE HELP LOL]
def produce_outputs(processed_data):
    # Use Langchain for LLM-based analysis, recommendations, etc. Should this be updated to DSPy too? again:[TONIC PLEASE HELP LOL]
    analysis = openai.complete(prompt=f"Analyze {processed_data}", engine="text-davinci-003", max_tokens=200)
    recommendations = openai.complete(prompt=f"Recommend strategies based on {processed_data}", engine="text-davinci-003", max_tokens=100)
    # Replace with your visualization logic
    visualization = None
    return analysis.choices[0].text, recommendations.choices[0].text, visualization


# Synth data generation using DSPy's distributed computing capabilities (taken partially from DSPY documentation)
def generate_synthetic_data_distributed(prompt, num_nodes=3):
    # Spawn synthetic data generation processes across multiple nodes
    processes = [spawn_processes(generate_synthetic_data, [f"Simulate scenarios for {prompt}"]) for _ in range(num_nodes)]

    # Collect the results from each node
    synthetic_data_list = []
    for process in processes:
        synthetic_data_list.extend(process.get())

    # Combine the results and return the synthetic data
    return "\n".join(synthetic_data_list)


# Generate synthetic data using DSPy's distributed computing capabilities. Again:[TONIC PLEASE HELP LOL]
synthetic_data = generate_synthetic_data_distributed(user_prompt)


# Generate outputs
report, recommendations, visualization = produce_outputs(combined_data)


# Print the results for testing pyrposes
print("Report:")
print(report)
print("\nRecommendations:")
print(recommendations)
print("\nVisualization:")
print(visualization)  # Currently "None" due to placeholder 'visualization'

# Moved from other gradio chunk near the top
gr.Interface(fn=generate_outputs, inputs=user_prompt, outputs=["text", "text", "image"]).launch()