|  | import math | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  |  | 
					
						
						|  | from torch.nn import Conv1d | 
					
						
						|  | from torch.nn.utils import weight_norm, remove_weight_norm | 
					
						
						|  |  | 
					
						
						|  | from openvoice import commons | 
					
						
						|  | from openvoice.commons import init_weights, get_padding | 
					
						
						|  | from openvoice.transforms import piecewise_rational_quadratic_transform | 
					
						
						|  | from openvoice.attentions import Encoder | 
					
						
						|  |  | 
					
						
						|  | LRELU_SLOPE = 0.1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LayerNorm(nn.Module): | 
					
						
						|  | def __init__(self, channels, eps=1e-5): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.eps = eps | 
					
						
						|  |  | 
					
						
						|  | self.gamma = nn.Parameter(torch.ones(channels)) | 
					
						
						|  | self.beta = nn.Parameter(torch.zeros(channels)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = x.transpose(1, -1) | 
					
						
						|  | x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | 
					
						
						|  | return x.transpose(1, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ConvReluNorm(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | n_layers, | 
					
						
						|  | p_dropout, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | assert n_layers > 1, "Number of layers should be larger than 0." | 
					
						
						|  |  | 
					
						
						|  | self.conv_layers = nn.ModuleList() | 
					
						
						|  | self.norm_layers = nn.ModuleList() | 
					
						
						|  | self.conv_layers.append( | 
					
						
						|  | nn.Conv1d( | 
					
						
						|  | in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers.append(LayerNorm(hidden_channels)) | 
					
						
						|  | self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) | 
					
						
						|  | for _ in range(n_layers - 1): | 
					
						
						|  | self.conv_layers.append( | 
					
						
						|  | nn.Conv1d( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | padding=kernel_size // 2, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers.append(LayerNorm(hidden_channels)) | 
					
						
						|  | self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | 
					
						
						|  | self.proj.weight.data.zero_() | 
					
						
						|  | self.proj.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask): | 
					
						
						|  | x_org = x | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | x = self.conv_layers[i](x * x_mask) | 
					
						
						|  | x = self.norm_layers[i](x) | 
					
						
						|  | x = self.relu_drop(x) | 
					
						
						|  | x = x_org + self.proj(x) | 
					
						
						|  | return x * x_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DDSConv(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Dilated and Depth-Separable Convolution | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  |  | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  | self.convs_sep = nn.ModuleList() | 
					
						
						|  | self.convs_1x1 = nn.ModuleList() | 
					
						
						|  | self.norms_1 = nn.ModuleList() | 
					
						
						|  | self.norms_2 = nn.ModuleList() | 
					
						
						|  | for i in range(n_layers): | 
					
						
						|  | dilation = kernel_size**i | 
					
						
						|  | padding = (kernel_size * dilation - dilation) // 2 | 
					
						
						|  | self.convs_sep.append( | 
					
						
						|  | nn.Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | groups=channels, | 
					
						
						|  | dilation=dilation, | 
					
						
						|  | padding=padding, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) | 
					
						
						|  | self.norms_1.append(LayerNorm(channels)) | 
					
						
						|  | self.norms_2.append(LayerNorm(channels)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None): | 
					
						
						|  | if g is not None: | 
					
						
						|  | x = x + g | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | y = self.convs_sep[i](x * x_mask) | 
					
						
						|  | y = self.norms_1[i](y) | 
					
						
						|  | y = F.gelu(y) | 
					
						
						|  | y = self.convs_1x1[i](y) | 
					
						
						|  | y = self.norms_2[i](y) | 
					
						
						|  | y = F.gelu(y) | 
					
						
						|  | y = self.drop(y) | 
					
						
						|  | x = x + y | 
					
						
						|  | return x * x_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class WN(torch.nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | dilation_rate, | 
					
						
						|  | n_layers, | 
					
						
						|  | gin_channels=0, | 
					
						
						|  | p_dropout=0, | 
					
						
						|  | ): | 
					
						
						|  | super(WN, self).__init__() | 
					
						
						|  | assert kernel_size % 2 == 1 | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.kernel_size = (kernel_size,) | 
					
						
						|  | self.dilation_rate = dilation_rate | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.gin_channels = gin_channels | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  |  | 
					
						
						|  | self.in_layers = torch.nn.ModuleList() | 
					
						
						|  | self.res_skip_layers = torch.nn.ModuleList() | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  |  | 
					
						
						|  | if gin_channels != 0: | 
					
						
						|  | cond_layer = torch.nn.Conv1d( | 
					
						
						|  | gin_channels, 2 * hidden_channels * n_layers, 1 | 
					
						
						|  | ) | 
					
						
						|  | self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") | 
					
						
						|  |  | 
					
						
						|  | for i in range(n_layers): | 
					
						
						|  | dilation = dilation_rate**i | 
					
						
						|  | padding = int((kernel_size * dilation - dilation) / 2) | 
					
						
						|  | in_layer = torch.nn.Conv1d( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | 2 * hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | dilation=dilation, | 
					
						
						|  | padding=padding, | 
					
						
						|  | ) | 
					
						
						|  | in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") | 
					
						
						|  | self.in_layers.append(in_layer) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if i < n_layers - 1: | 
					
						
						|  | res_skip_channels = 2 * hidden_channels | 
					
						
						|  | else: | 
					
						
						|  | res_skip_channels = hidden_channels | 
					
						
						|  |  | 
					
						
						|  | res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) | 
					
						
						|  | res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") | 
					
						
						|  | self.res_skip_layers.append(res_skip_layer) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None, **kwargs): | 
					
						
						|  | output = torch.zeros_like(x) | 
					
						
						|  | n_channels_tensor = torch.IntTensor([self.hidden_channels]) | 
					
						
						|  |  | 
					
						
						|  | if g is not None: | 
					
						
						|  | g = self.cond_layer(g) | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | x_in = self.in_layers[i](x) | 
					
						
						|  | if g is not None: | 
					
						
						|  | cond_offset = i * 2 * self.hidden_channels | 
					
						
						|  | g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] | 
					
						
						|  | else: | 
					
						
						|  | g_l = torch.zeros_like(x_in) | 
					
						
						|  |  | 
					
						
						|  | acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) | 
					
						
						|  | acts = self.drop(acts) | 
					
						
						|  |  | 
					
						
						|  | res_skip_acts = self.res_skip_layers[i](acts) | 
					
						
						|  | if i < self.n_layers - 1: | 
					
						
						|  | res_acts = res_skip_acts[:, : self.hidden_channels, :] | 
					
						
						|  | x = (x + res_acts) * x_mask | 
					
						
						|  | output = output + res_skip_acts[:, self.hidden_channels :, :] | 
					
						
						|  | else: | 
					
						
						|  | output = output + res_skip_acts | 
					
						
						|  | return output * x_mask | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | if self.gin_channels != 0: | 
					
						
						|  | torch.nn.utils.remove_weight_norm(self.cond_layer) | 
					
						
						|  | for l in self.in_layers: | 
					
						
						|  | torch.nn.utils.remove_weight_norm(l) | 
					
						
						|  | for l in self.res_skip_layers: | 
					
						
						|  | torch.nn.utils.remove_weight_norm(l) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResBlock1(torch.nn.Module): | 
					
						
						|  | def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): | 
					
						
						|  | super(ResBlock1, self).__init__() | 
					
						
						|  | self.convs1 = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=dilation[0], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[0]), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=dilation[1], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[1]), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=dilation[2], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[2]), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self.convs1.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | self.convs2 = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=1, | 
					
						
						|  | padding=get_padding(kernel_size, 1), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=1, | 
					
						
						|  | padding=get_padding(kernel_size, 1), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=1, | 
					
						
						|  | padding=get_padding(kernel_size, 1), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self.convs2.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask=None): | 
					
						
						|  | for c1, c2 in zip(self.convs1, self.convs2): | 
					
						
						|  | xt = F.leaky_relu(x, LRELU_SLOPE) | 
					
						
						|  | if x_mask is not None: | 
					
						
						|  | xt = xt * x_mask | 
					
						
						|  | xt = c1(xt) | 
					
						
						|  | xt = F.leaky_relu(xt, LRELU_SLOPE) | 
					
						
						|  | if x_mask is not None: | 
					
						
						|  | xt = xt * x_mask | 
					
						
						|  | xt = c2(xt) | 
					
						
						|  | x = xt + x | 
					
						
						|  | if x_mask is not None: | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | for l in self.convs1: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  | for l in self.convs2: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResBlock2(torch.nn.Module): | 
					
						
						|  | def __init__(self, channels, kernel_size=3, dilation=(1, 3)): | 
					
						
						|  | super(ResBlock2, self).__init__() | 
					
						
						|  | self.convs = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=dilation[0], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[0]), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | weight_norm( | 
					
						
						|  | Conv1d( | 
					
						
						|  | channels, | 
					
						
						|  | channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | 1, | 
					
						
						|  | dilation=dilation[1], | 
					
						
						|  | padding=get_padding(kernel_size, dilation[1]), | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self.convs.apply(init_weights) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask=None): | 
					
						
						|  | for c in self.convs: | 
					
						
						|  | xt = F.leaky_relu(x, LRELU_SLOPE) | 
					
						
						|  | if x_mask is not None: | 
					
						
						|  | xt = xt * x_mask | 
					
						
						|  | xt = c(xt) | 
					
						
						|  | x = xt + x | 
					
						
						|  | if x_mask is not None: | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def remove_weight_norm(self): | 
					
						
						|  | for l in self.convs: | 
					
						
						|  | remove_weight_norm(l) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Log(nn.Module): | 
					
						
						|  | def forward(self, x, x_mask, reverse=False, **kwargs): | 
					
						
						|  | if not reverse: | 
					
						
						|  | y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask | 
					
						
						|  | logdet = torch.sum(-y, [1, 2]) | 
					
						
						|  | return y, logdet | 
					
						
						|  | else: | 
					
						
						|  | x = torch.exp(x) * x_mask | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Flip(nn.Module): | 
					
						
						|  | def forward(self, x, *args, reverse=False, **kwargs): | 
					
						
						|  | x = torch.flip(x, [1]) | 
					
						
						|  | if not reverse: | 
					
						
						|  | logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) | 
					
						
						|  | return x, logdet | 
					
						
						|  | else: | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ElementwiseAffine(nn.Module): | 
					
						
						|  | def __init__(self, channels): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.m = nn.Parameter(torch.zeros(channels, 1)) | 
					
						
						|  | self.logs = nn.Parameter(torch.zeros(channels, 1)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, reverse=False, **kwargs): | 
					
						
						|  | if not reverse: | 
					
						
						|  | y = self.m + torch.exp(self.logs) * x | 
					
						
						|  | y = y * x_mask | 
					
						
						|  | logdet = torch.sum(self.logs * x_mask, [1, 2]) | 
					
						
						|  | return y, logdet | 
					
						
						|  | else: | 
					
						
						|  | x = (x - self.m) * torch.exp(-self.logs) * x_mask | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResidualCouplingLayer(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | dilation_rate, | 
					
						
						|  | n_layers, | 
					
						
						|  | p_dropout=0, | 
					
						
						|  | gin_channels=0, | 
					
						
						|  | mean_only=False, | 
					
						
						|  | ): | 
					
						
						|  | assert channels % 2 == 0, "channels should be divisible by 2" | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.dilation_rate = dilation_rate | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.half_channels = channels // 2 | 
					
						
						|  | self.mean_only = mean_only | 
					
						
						|  |  | 
					
						
						|  | self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | 
					
						
						|  | self.enc = WN( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | dilation_rate, | 
					
						
						|  | n_layers, | 
					
						
						|  | p_dropout=p_dropout, | 
					
						
						|  | gin_channels=gin_channels, | 
					
						
						|  | ) | 
					
						
						|  | self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | 
					
						
						|  | self.post.weight.data.zero_() | 
					
						
						|  | self.post.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None, reverse=False): | 
					
						
						|  | x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | 
					
						
						|  | h = self.pre(x0) * x_mask | 
					
						
						|  | h = self.enc(h, x_mask, g=g) | 
					
						
						|  | stats = self.post(h) * x_mask | 
					
						
						|  | if not self.mean_only: | 
					
						
						|  | m, logs = torch.split(stats, [self.half_channels] * 2, 1) | 
					
						
						|  | else: | 
					
						
						|  | m = stats | 
					
						
						|  | logs = torch.zeros_like(m) | 
					
						
						|  |  | 
					
						
						|  | if not reverse: | 
					
						
						|  | x1 = m + x1 * torch.exp(logs) * x_mask | 
					
						
						|  | x = torch.cat([x0, x1], 1) | 
					
						
						|  | logdet = torch.sum(logs, [1, 2]) | 
					
						
						|  | return x, logdet | 
					
						
						|  | else: | 
					
						
						|  | x1 = (x1 - m) * torch.exp(-logs) * x_mask | 
					
						
						|  | x = torch.cat([x0, x1], 1) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ConvFlow(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | n_layers, | 
					
						
						|  | num_bins=10, | 
					
						
						|  | tail_bound=5.0, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.num_bins = num_bins | 
					
						
						|  | self.tail_bound = tail_bound | 
					
						
						|  | self.half_channels = in_channels // 2 | 
					
						
						|  |  | 
					
						
						|  | self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) | 
					
						
						|  | self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) | 
					
						
						|  | self.proj = nn.Conv1d( | 
					
						
						|  | filter_channels, self.half_channels * (num_bins * 3 - 1), 1 | 
					
						
						|  | ) | 
					
						
						|  | self.proj.weight.data.zero_() | 
					
						
						|  | self.proj.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None, reverse=False): | 
					
						
						|  | x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | 
					
						
						|  | h = self.pre(x0) | 
					
						
						|  | h = self.convs(h, x_mask, g=g) | 
					
						
						|  | h = self.proj(h) * x_mask | 
					
						
						|  |  | 
					
						
						|  | b, c, t = x0.shape | 
					
						
						|  | h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) | 
					
						
						|  |  | 
					
						
						|  | unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) | 
					
						
						|  | unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( | 
					
						
						|  | self.filter_channels | 
					
						
						|  | ) | 
					
						
						|  | unnormalized_derivatives = h[..., 2 * self.num_bins :] | 
					
						
						|  |  | 
					
						
						|  | x1, logabsdet = piecewise_rational_quadratic_transform( | 
					
						
						|  | x1, | 
					
						
						|  | unnormalized_widths, | 
					
						
						|  | unnormalized_heights, | 
					
						
						|  | unnormalized_derivatives, | 
					
						
						|  | inverse=reverse, | 
					
						
						|  | tails="linear", | 
					
						
						|  | tail_bound=self.tail_bound, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | x = torch.cat([x0, x1], 1) * x_mask | 
					
						
						|  | logdet = torch.sum(logabsdet * x_mask, [1, 2]) | 
					
						
						|  | if not reverse: | 
					
						
						|  | return x, logdet | 
					
						
						|  | else: | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TransformerCouplingLayer(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | n_layers, | 
					
						
						|  | n_heads, | 
					
						
						|  | p_dropout=0, | 
					
						
						|  | filter_channels=0, | 
					
						
						|  | mean_only=False, | 
					
						
						|  | wn_sharing_parameter=None, | 
					
						
						|  | gin_channels=0, | 
					
						
						|  | ): | 
					
						
						|  | assert n_layers == 3, n_layers | 
					
						
						|  | assert channels % 2 == 0, "channels should be divisible by 2" | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.half_channels = channels // 2 | 
					
						
						|  | self.mean_only = mean_only | 
					
						
						|  |  | 
					
						
						|  | self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | 
					
						
						|  | self.enc = ( | 
					
						
						|  | Encoder( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout, | 
					
						
						|  | isflow=True, | 
					
						
						|  | gin_channels=gin_channels, | 
					
						
						|  | ) | 
					
						
						|  | if wn_sharing_parameter is None | 
					
						
						|  | else wn_sharing_parameter | 
					
						
						|  | ) | 
					
						
						|  | self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | 
					
						
						|  | self.post.weight.data.zero_() | 
					
						
						|  | self.post.bias.data.zero_() | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None, reverse=False): | 
					
						
						|  | x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | 
					
						
						|  | h = self.pre(x0) * x_mask | 
					
						
						|  | h = self.enc(h, x_mask, g=g) | 
					
						
						|  | stats = self.post(h) * x_mask | 
					
						
						|  | if not self.mean_only: | 
					
						
						|  | m, logs = torch.split(stats, [self.half_channels] * 2, 1) | 
					
						
						|  | else: | 
					
						
						|  | m = stats | 
					
						
						|  | logs = torch.zeros_like(m) | 
					
						
						|  |  | 
					
						
						|  | if not reverse: | 
					
						
						|  | x1 = m + x1 * torch.exp(logs) * x_mask | 
					
						
						|  | x = torch.cat([x0, x1], 1) | 
					
						
						|  | logdet = torch.sum(logs, [1, 2]) | 
					
						
						|  | return x, logdet | 
					
						
						|  | else: | 
					
						
						|  | x1 = (x1 - m) * torch.exp(-logs) * x_mask | 
					
						
						|  | x = torch.cat([x0, x1], 1) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | x1, logabsdet = piecewise_rational_quadratic_transform( | 
					
						
						|  | x1, | 
					
						
						|  | unnormalized_widths, | 
					
						
						|  | unnormalized_heights, | 
					
						
						|  | unnormalized_derivatives, | 
					
						
						|  | inverse=reverse, | 
					
						
						|  | tails="linear", | 
					
						
						|  | tail_bound=self.tail_bound, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | x = torch.cat([x0, x1], 1) * x_mask | 
					
						
						|  | logdet = torch.sum(logabsdet * x_mask, [1, 2]) | 
					
						
						|  | if not reverse: | 
					
						
						|  | return x, logdet | 
					
						
						|  | else: | 
					
						
						|  | return x | 
					
						
						|  |  |