|  | import math | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import functional as F | 
					
						
						|  |  | 
					
						
						|  | from openvoice import commons | 
					
						
						|  | import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LayerNorm(nn.Module): | 
					
						
						|  | def __init__(self, channels, eps=1e-5): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.eps = eps | 
					
						
						|  |  | 
					
						
						|  | self.gamma = nn.Parameter(torch.ones(channels)) | 
					
						
						|  | self.beta = nn.Parameter(torch.zeros(channels)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | x = x.transpose(1, -1) | 
					
						
						|  | x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | 
					
						
						|  | return x.transpose(1, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @torch.jit.script | 
					
						
						|  | def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | 
					
						
						|  | n_channels_int = n_channels[0] | 
					
						
						|  | in_act = input_a + input_b | 
					
						
						|  | t_act = torch.tanh(in_act[:, :n_channels_int, :]) | 
					
						
						|  | s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | 
					
						
						|  | acts = t_act * s_act | 
					
						
						|  | return acts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Encoder(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | p_dropout=0.0, | 
					
						
						|  | window_size=4, | 
					
						
						|  | isflow=True, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.n_heads = n_heads | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.window_size = window_size | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.cond_layer_idx = self.n_layers | 
					
						
						|  | if "gin_channels" in kwargs: | 
					
						
						|  | self.gin_channels = kwargs["gin_channels"] | 
					
						
						|  | if self.gin_channels != 0: | 
					
						
						|  | self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels) | 
					
						
						|  |  | 
					
						
						|  | self.cond_layer_idx = ( | 
					
						
						|  | kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | self.cond_layer_idx < self.n_layers | 
					
						
						|  | ), "cond_layer_idx should be less than n_layers" | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  | self.attn_layers = nn.ModuleList() | 
					
						
						|  | self.norm_layers_1 = nn.ModuleList() | 
					
						
						|  | self.ffn_layers = nn.ModuleList() | 
					
						
						|  | self.norm_layers_2 = nn.ModuleList() | 
					
						
						|  |  | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | self.attn_layers.append( | 
					
						
						|  | MultiHeadAttention( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | p_dropout=p_dropout, | 
					
						
						|  | window_size=window_size, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers_1.append(LayerNorm(hidden_channels)) | 
					
						
						|  | self.ffn_layers.append( | 
					
						
						|  | FFN( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout=p_dropout, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers_2.append(LayerNorm(hidden_channels)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, g=None): | 
					
						
						|  | attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | if i == self.cond_layer_idx and g is not None: | 
					
						
						|  | g = self.spk_emb_linear(g.transpose(1, 2)) | 
					
						
						|  | g = g.transpose(1, 2) | 
					
						
						|  | x = x + g | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | y = self.attn_layers[i](x, x, attn_mask) | 
					
						
						|  | y = self.drop(y) | 
					
						
						|  | x = self.norm_layers_1[i](x + y) | 
					
						
						|  |  | 
					
						
						|  | y = self.ffn_layers[i](x, x_mask) | 
					
						
						|  | y = self.drop(y) | 
					
						
						|  | x = self.norm_layers_2[i](x + y) | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Decoder(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | n_layers, | 
					
						
						|  | kernel_size=1, | 
					
						
						|  | p_dropout=0.0, | 
					
						
						|  | proximal_bias=False, | 
					
						
						|  | proximal_init=True, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_channels = hidden_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.n_heads = n_heads | 
					
						
						|  | self.n_layers = n_layers | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.proximal_bias = proximal_bias | 
					
						
						|  | self.proximal_init = proximal_init | 
					
						
						|  |  | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  | self.self_attn_layers = nn.ModuleList() | 
					
						
						|  | self.norm_layers_0 = nn.ModuleList() | 
					
						
						|  | self.encdec_attn_layers = nn.ModuleList() | 
					
						
						|  | self.norm_layers_1 = nn.ModuleList() | 
					
						
						|  | self.ffn_layers = nn.ModuleList() | 
					
						
						|  | self.norm_layers_2 = nn.ModuleList() | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | self.self_attn_layers.append( | 
					
						
						|  | MultiHeadAttention( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | p_dropout=p_dropout, | 
					
						
						|  | proximal_bias=proximal_bias, | 
					
						
						|  | proximal_init=proximal_init, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers_0.append(LayerNorm(hidden_channels)) | 
					
						
						|  | self.encdec_attn_layers.append( | 
					
						
						|  | MultiHeadAttention( | 
					
						
						|  | hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers_1.append(LayerNorm(hidden_channels)) | 
					
						
						|  | self.ffn_layers.append( | 
					
						
						|  | FFN( | 
					
						
						|  | hidden_channels, | 
					
						
						|  | hidden_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout=p_dropout, | 
					
						
						|  | causal=True, | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  | self.norm_layers_2.append(LayerNorm(hidden_channels)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask, h, h_mask): | 
					
						
						|  | """ | 
					
						
						|  | x: decoder input | 
					
						
						|  | h: encoder output | 
					
						
						|  | """ | 
					
						
						|  | self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to( | 
					
						
						|  | device=x.device, dtype=x.dtype | 
					
						
						|  | ) | 
					
						
						|  | encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | for i in range(self.n_layers): | 
					
						
						|  | y = self.self_attn_layers[i](x, x, self_attn_mask) | 
					
						
						|  | y = self.drop(y) | 
					
						
						|  | x = self.norm_layers_0[i](x + y) | 
					
						
						|  |  | 
					
						
						|  | y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) | 
					
						
						|  | y = self.drop(y) | 
					
						
						|  | x = self.norm_layers_1[i](x + y) | 
					
						
						|  |  | 
					
						
						|  | y = self.ffn_layers[i](x, x_mask) | 
					
						
						|  | y = self.drop(y) | 
					
						
						|  | x = self.norm_layers_2[i](x + y) | 
					
						
						|  | x = x * x_mask | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiHeadAttention(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | n_heads, | 
					
						
						|  | p_dropout=0.0, | 
					
						
						|  | window_size=None, | 
					
						
						|  | heads_share=True, | 
					
						
						|  | block_length=None, | 
					
						
						|  | proximal_bias=False, | 
					
						
						|  | proximal_init=False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | assert channels % n_heads == 0 | 
					
						
						|  |  | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.n_heads = n_heads | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.window_size = window_size | 
					
						
						|  | self.heads_share = heads_share | 
					
						
						|  | self.block_length = block_length | 
					
						
						|  | self.proximal_bias = proximal_bias | 
					
						
						|  | self.proximal_init = proximal_init | 
					
						
						|  | self.attn = None | 
					
						
						|  |  | 
					
						
						|  | self.k_channels = channels // n_heads | 
					
						
						|  | self.conv_q = nn.Conv1d(channels, channels, 1) | 
					
						
						|  | self.conv_k = nn.Conv1d(channels, channels, 1) | 
					
						
						|  | self.conv_v = nn.Conv1d(channels, channels, 1) | 
					
						
						|  | self.conv_o = nn.Conv1d(channels, out_channels, 1) | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  |  | 
					
						
						|  | if window_size is not None: | 
					
						
						|  | n_heads_rel = 1 if heads_share else n_heads | 
					
						
						|  | rel_stddev = self.k_channels**-0.5 | 
					
						
						|  | self.emb_rel_k = nn.Parameter( | 
					
						
						|  | torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) | 
					
						
						|  | * rel_stddev | 
					
						
						|  | ) | 
					
						
						|  | self.emb_rel_v = nn.Parameter( | 
					
						
						|  | torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) | 
					
						
						|  | * rel_stddev | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | nn.init.xavier_uniform_(self.conv_q.weight) | 
					
						
						|  | nn.init.xavier_uniform_(self.conv_k.weight) | 
					
						
						|  | nn.init.xavier_uniform_(self.conv_v.weight) | 
					
						
						|  | if proximal_init: | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | self.conv_k.weight.copy_(self.conv_q.weight) | 
					
						
						|  | self.conv_k.bias.copy_(self.conv_q.bias) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, c, attn_mask=None): | 
					
						
						|  | q = self.conv_q(x) | 
					
						
						|  | k = self.conv_k(c) | 
					
						
						|  | v = self.conv_v(c) | 
					
						
						|  |  | 
					
						
						|  | x, self.attn = self.attention(q, k, v, mask=attn_mask) | 
					
						
						|  |  | 
					
						
						|  | x = self.conv_o(x) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def attention(self, query, key, value, mask=None): | 
					
						
						|  |  | 
					
						
						|  | b, d, t_s, t_t = (*key.size(), query.size(2)) | 
					
						
						|  | query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) | 
					
						
						|  | key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | 
					
						
						|  | value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) | 
					
						
						|  |  | 
					
						
						|  | scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) | 
					
						
						|  | if self.window_size is not None: | 
					
						
						|  | assert ( | 
					
						
						|  | t_s == t_t | 
					
						
						|  | ), "Relative attention is only available for self-attention." | 
					
						
						|  | key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) | 
					
						
						|  | rel_logits = self._matmul_with_relative_keys( | 
					
						
						|  | query / math.sqrt(self.k_channels), key_relative_embeddings | 
					
						
						|  | ) | 
					
						
						|  | scores_local = self._relative_position_to_absolute_position(rel_logits) | 
					
						
						|  | scores = scores + scores_local | 
					
						
						|  | if self.proximal_bias: | 
					
						
						|  | assert t_s == t_t, "Proximal bias is only available for self-attention." | 
					
						
						|  | scores = scores + self._attention_bias_proximal(t_s).to( | 
					
						
						|  | device=scores.device, dtype=scores.dtype | 
					
						
						|  | ) | 
					
						
						|  | if mask is not None: | 
					
						
						|  | scores = scores.masked_fill(mask == 0, -1e4) | 
					
						
						|  | if self.block_length is not None: | 
					
						
						|  | assert ( | 
					
						
						|  | t_s == t_t | 
					
						
						|  | ), "Local attention is only available for self-attention." | 
					
						
						|  | block_mask = ( | 
					
						
						|  | torch.ones_like(scores) | 
					
						
						|  | .triu(-self.block_length) | 
					
						
						|  | .tril(self.block_length) | 
					
						
						|  | ) | 
					
						
						|  | scores = scores.masked_fill(block_mask == 0, -1e4) | 
					
						
						|  | p_attn = F.softmax(scores, dim=-1) | 
					
						
						|  | p_attn = self.drop(p_attn) | 
					
						
						|  | output = torch.matmul(p_attn, value) | 
					
						
						|  | if self.window_size is not None: | 
					
						
						|  | relative_weights = self._absolute_position_to_relative_position(p_attn) | 
					
						
						|  | value_relative_embeddings = self._get_relative_embeddings( | 
					
						
						|  | self.emb_rel_v, t_s | 
					
						
						|  | ) | 
					
						
						|  | output = output + self._matmul_with_relative_values( | 
					
						
						|  | relative_weights, value_relative_embeddings | 
					
						
						|  | ) | 
					
						
						|  | output = ( | 
					
						
						|  | output.transpose(2, 3).contiguous().view(b, d, t_t) | 
					
						
						|  | ) | 
					
						
						|  | return output, p_attn | 
					
						
						|  |  | 
					
						
						|  | def _matmul_with_relative_values(self, x, y): | 
					
						
						|  | """ | 
					
						
						|  | x: [b, h, l, m] | 
					
						
						|  | y: [h or 1, m, d] | 
					
						
						|  | ret: [b, h, l, d] | 
					
						
						|  | """ | 
					
						
						|  | ret = torch.matmul(x, y.unsqueeze(0)) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def _matmul_with_relative_keys(self, x, y): | 
					
						
						|  | """ | 
					
						
						|  | x: [b, h, l, d] | 
					
						
						|  | y: [h or 1, m, d] | 
					
						
						|  | ret: [b, h, l, m] | 
					
						
						|  | """ | 
					
						
						|  | ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  | def _get_relative_embeddings(self, relative_embeddings, length): | 
					
						
						|  | 2 * self.window_size + 1 | 
					
						
						|  |  | 
					
						
						|  | pad_length = max(length - (self.window_size + 1), 0) | 
					
						
						|  | slice_start_position = max((self.window_size + 1) - length, 0) | 
					
						
						|  | slice_end_position = slice_start_position + 2 * length - 1 | 
					
						
						|  | if pad_length > 0: | 
					
						
						|  | padded_relative_embeddings = F.pad( | 
					
						
						|  | relative_embeddings, | 
					
						
						|  | commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | padded_relative_embeddings = relative_embeddings | 
					
						
						|  | used_relative_embeddings = padded_relative_embeddings[ | 
					
						
						|  | :, slice_start_position:slice_end_position | 
					
						
						|  | ] | 
					
						
						|  | return used_relative_embeddings | 
					
						
						|  |  | 
					
						
						|  | def _relative_position_to_absolute_position(self, x): | 
					
						
						|  | """ | 
					
						
						|  | x: [b, h, l, 2*l-1] | 
					
						
						|  | ret: [b, h, l, l] | 
					
						
						|  | """ | 
					
						
						|  | batch, heads, length, _ = x.size() | 
					
						
						|  |  | 
					
						
						|  | x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x_flat = x.view([batch, heads, length * 2 * length]) | 
					
						
						|  | x_flat = F.pad( | 
					
						
						|  | x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[ | 
					
						
						|  | :, :, :length, length - 1 : | 
					
						
						|  | ] | 
					
						
						|  | return x_final | 
					
						
						|  |  | 
					
						
						|  | def _absolute_position_to_relative_position(self, x): | 
					
						
						|  | """ | 
					
						
						|  | x: [b, h, l, l] | 
					
						
						|  | ret: [b, h, l, 2*l-1] | 
					
						
						|  | """ | 
					
						
						|  | batch, heads, length, _ = x.size() | 
					
						
						|  |  | 
					
						
						|  | x = F.pad( | 
					
						
						|  | x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]) | 
					
						
						|  | ) | 
					
						
						|  | x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) | 
					
						
						|  |  | 
					
						
						|  | x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) | 
					
						
						|  | x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] | 
					
						
						|  | return x_final | 
					
						
						|  |  | 
					
						
						|  | def _attention_bias_proximal(self, length): | 
					
						
						|  | """Bias for self-attention to encourage attention to close positions. | 
					
						
						|  | Args: | 
					
						
						|  | length: an integer scalar. | 
					
						
						|  | Returns: | 
					
						
						|  | a Tensor with shape [1, 1, length, length] | 
					
						
						|  | """ | 
					
						
						|  | r = torch.arange(length, dtype=torch.float32) | 
					
						
						|  | diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) | 
					
						
						|  | return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FFN(nn.Module): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | in_channels, | 
					
						
						|  | out_channels, | 
					
						
						|  | filter_channels, | 
					
						
						|  | kernel_size, | 
					
						
						|  | p_dropout=0.0, | 
					
						
						|  | activation=None, | 
					
						
						|  | causal=False, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.in_channels = in_channels | 
					
						
						|  | self.out_channels = out_channels | 
					
						
						|  | self.filter_channels = filter_channels | 
					
						
						|  | self.kernel_size = kernel_size | 
					
						
						|  | self.p_dropout = p_dropout | 
					
						
						|  | self.activation = activation | 
					
						
						|  | self.causal = causal | 
					
						
						|  |  | 
					
						
						|  | if causal: | 
					
						
						|  | self.padding = self._causal_padding | 
					
						
						|  | else: | 
					
						
						|  | self.padding = self._same_padding | 
					
						
						|  |  | 
					
						
						|  | self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) | 
					
						
						|  | self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) | 
					
						
						|  | self.drop = nn.Dropout(p_dropout) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, x_mask): | 
					
						
						|  | x = self.conv_1(self.padding(x * x_mask)) | 
					
						
						|  | if self.activation == "gelu": | 
					
						
						|  | x = x * torch.sigmoid(1.702 * x) | 
					
						
						|  | else: | 
					
						
						|  | x = torch.relu(x) | 
					
						
						|  | x = self.drop(x) | 
					
						
						|  | x = self.conv_2(self.padding(x * x_mask)) | 
					
						
						|  | return x * x_mask | 
					
						
						|  |  | 
					
						
						|  | def _causal_padding(self, x): | 
					
						
						|  | if self.kernel_size == 1: | 
					
						
						|  | return x | 
					
						
						|  | pad_l = self.kernel_size - 1 | 
					
						
						|  | pad_r = 0 | 
					
						
						|  | padding = [[0, 0], [0, 0], [pad_l, pad_r]] | 
					
						
						|  | x = F.pad(x, commons.convert_pad_shape(padding)) | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _same_padding(self, x): | 
					
						
						|  | if self.kernel_size == 1: | 
					
						
						|  | return x | 
					
						
						|  | pad_l = (self.kernel_size - 1) // 2 | 
					
						
						|  | pad_r = self.kernel_size // 2 | 
					
						
						|  | padding = [[0, 0], [0, 0], [pad_l, pad_r]] | 
					
						
						|  | x = F.pad(x, commons.convert_pad_shape(padding)) | 
					
						
						|  | return x | 
					
						
						|  |  |