Spaces:
Sleeping
Sleeping
Changement de modele : Mistral 7B
Browse files- .gitignore +1 -0
- app backup.py +91 -0
- app.py +18 -3
- logo.png +0 -0
- poetry.lock +0 -0
- pyproject.toml +22 -0
- test.py +26 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app backup.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
|
6 |
+
# Charger les variables d'environnement
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
# Vérifie si la clé API est définie dans l'environnement
|
10 |
+
api_token = os.getenv("HF_API_TOKEN")
|
11 |
+
model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
12 |
+
|
13 |
+
if not api_token:
|
14 |
+
raise ValueError("API token is required. Please set it in your .env file.")
|
15 |
+
|
16 |
+
# Initialiser le client d'inférence
|
17 |
+
client = InferenceClient(token=api_token, model=model_name)
|
18 |
+
|
19 |
+
# Fonction de réponse
|
20 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
21 |
+
messages = [{"role": "system", "content": system_message}]
|
22 |
+
for user, assistant in history:
|
23 |
+
if user:
|
24 |
+
messages.append({"role": "user", "content": user})
|
25 |
+
if assistant:
|
26 |
+
messages.append({"role": "assistant", "content": assistant})
|
27 |
+
|
28 |
+
messages.append({"role": "user", "content": message})
|
29 |
+
|
30 |
+
response = ""
|
31 |
+
try:
|
32 |
+
for message in client.chat_completion(
|
33 |
+
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p
|
34 |
+
):
|
35 |
+
token = message.choices[0].delta.content
|
36 |
+
response += token
|
37 |
+
yield response
|
38 |
+
except Exception as e:
|
39 |
+
yield f"Error: {str(e)}"
|
40 |
+
|
41 |
+
# Interface utilisateur avec Gradio
|
42 |
+
demo = gr.Blocks()
|
43 |
+
|
44 |
+
with demo:
|
45 |
+
# Header avec le logo et le slogan
|
46 |
+
with gr.Row():
|
47 |
+
gr.Image("logo.png", show_label=False, interactive=False, elem_id="logo", scale=1)
|
48 |
+
gr.Markdown(
|
49 |
+
"""
|
50 |
+
<div style="text-align: center;">
|
51 |
+
<h1 style="color: #0fa86b;">SHAURI</h1>
|
52 |
+
<p style="font-size: 16px; color: #000;">Un test avec le modèle Mistral via l'API Hugging Face</p>
|
53 |
+
</div>
|
54 |
+
"""
|
55 |
+
)
|
56 |
+
|
57 |
+
# Composant Chatbot
|
58 |
+
chatbot = gr.Chatbot(label="Chat History")
|
59 |
+
|
60 |
+
# Zone de saisie utilisateur
|
61 |
+
with gr.Row():
|
62 |
+
user_input = gr.Textbox(label="Your Message", placeholder="Type your message here...", lines=1)
|
63 |
+
|
64 |
+
# Réglages du système et paramètres
|
65 |
+
with gr.Row():
|
66 |
+
system_message = gr.Textbox(
|
67 |
+
value="You are a friendly Chatbot.",
|
68 |
+
label="System Message",
|
69 |
+
lines=2,
|
70 |
+
)
|
71 |
+
with gr.Row():
|
72 |
+
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
|
73 |
+
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
74 |
+
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
75 |
+
|
76 |
+
# Interaction entre l'utilisateur et le chatbot
|
77 |
+
def handle_message(message, history, system_msg, max_toks, temp, top_p_val):
|
78 |
+
if history is None:
|
79 |
+
history = []
|
80 |
+
for response in respond(message, history, system_msg, max_toks, temp, top_p_val):
|
81 |
+
history.append((message, response))
|
82 |
+
yield history, ""
|
83 |
+
|
84 |
+
user_input.submit(
|
85 |
+
fn=handle_message,
|
86 |
+
inputs=[user_input, chatbot, system_message, max_tokens, temperature, top_p],
|
87 |
+
outputs=[chatbot, user_input],
|
88 |
+
)
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
demo.launch()
|
app.py
CHANGED
@@ -1,11 +1,26 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
-
For more information on
|
6 |
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def respond(
|
11 |
message,
|
@@ -61,4 +76,4 @@ demo = gr.ChatInterface(
|
|
61 |
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
+
import os
|
4 |
+
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
load_dotenv() # Charge les variables depuis .env
|
7 |
|
8 |
"""
|
9 |
+
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
10 |
"""
|
|
|
11 |
|
12 |
+
# Vérifie si la clé API est définie dans l'environnement (pour local)
|
13 |
+
api_token = os.getenv("HF_API_TOKEN")
|
14 |
+
|
15 |
+
if api_token:
|
16 |
+
# Local : Utilise la clé API
|
17 |
+
print("Local key found in .env")
|
18 |
+
client = InferenceClient(token=api_token, model="HuggingFaceH4/zephyr-7b-beta")
|
19 |
+
else:
|
20 |
+
# Sur Hugging Face Spaces : Pas besoin de clé
|
21 |
+
print("We are on HF, no need API key")
|
22 |
+
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta")
|
23 |
+
|
24 |
|
25 |
def respond(
|
26 |
message,
|
|
|
76 |
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
+
demo.launch()
|
logo.png
ADDED
![]() |
poetry.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[tool.poetry]
|
2 |
+
name = "gradio-chatbot-test"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Test huggingface"
|
5 |
+
authors = ["Guillaume Soto"]
|
6 |
+
license = "Open"
|
7 |
+
readme = "README.md"
|
8 |
+
package-mode = false
|
9 |
+
|
10 |
+
[tool.poetry.dependencies]
|
11 |
+
python = "^3.12"
|
12 |
+
gradio = "^5.5.0"
|
13 |
+
huggingface-hub = "^0.26.2"
|
14 |
+
python-dotenv = "^1.0.1"
|
15 |
+
langchain = "^0.3.7"
|
16 |
+
requests = "^2.32.3"
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
[build-system]
|
21 |
+
requires = ["poetry-core"]
|
22 |
+
build-backend = "poetry.core.masonry.api"
|
test.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
# Charger les variables d'environnement depuis .env
|
6 |
+
load_dotenv()
|
7 |
+
|
8 |
+
# Récupérer la clé API Hugging Face depuis .env
|
9 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
10 |
+
|
11 |
+
# URL de l'API d'inférence
|
12 |
+
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B"
|
13 |
+
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
14 |
+
|
15 |
+
# Fonction pour envoyer une requête
|
16 |
+
def query(payload):
|
17 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
18 |
+
return response.json()
|
19 |
+
|
20 |
+
# Test du modèle avec un exemple simple
|
21 |
+
output = query({
|
22 |
+
"inputs": "What are the benefits of artificial intelligence in education?",
|
23 |
+
})
|
24 |
+
|
25 |
+
# Afficher le résultat
|
26 |
+
print(output)
|