Spaces:
Sleeping
Sleeping
add total variation loss + tuning changes
Browse files
app.py
CHANGED
|
@@ -11,14 +11,19 @@ model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384'
|
|
| 11 |
model.to(device)
|
| 12 |
model.eval()
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def process_image(input_image, learning_rate, iterations, n_targets, seed):
|
| 15 |
if input_image is None:
|
| 16 |
return None
|
| 17 |
-
|
| 18 |
-
def get_encoder_activations(x):
|
| 19 |
-
encoder_output = model.vit(x)
|
| 20 |
-
final_activations = encoder_output.last_hidden_state[:,0,:]
|
| 21 |
-
return final_activations
|
| 22 |
|
| 23 |
image = input_image.convert('RGB')
|
| 24 |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
|
@@ -36,8 +41,11 @@ def process_image(input_image, learning_rate, iterations, n_targets, seed):
|
|
| 36 |
|
| 37 |
final_activations = get_encoder_activations(pixel_values)
|
| 38 |
logits = model.classifier(final_activations[0])
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
with torch.no_grad():
|
| 43 |
pixel_values.data += learning_rate * pixel_values.grad.data
|
|
@@ -52,9 +60,10 @@ iface = gr.Interface(
|
|
| 52 |
fn=process_image,
|
| 53 |
inputs=[
|
| 54 |
gr.Image(type="pil"),
|
| 55 |
-
gr.Number(value=
|
| 56 |
-
gr.Number(value=
|
| 57 |
-
gr.Number(value=
|
|
|
|
| 58 |
gr.Number(value=50, minimum=1, maximum=1000, label="Number of Random Target Class Activations to Maximise"),
|
| 59 |
],
|
| 60 |
outputs=[gr.Image(type="numpy", label="ViT-Dreamed Image")]
|
|
|
|
| 11 |
model.to(device)
|
| 12 |
model.eval()
|
| 13 |
|
| 14 |
+
def get_encoder_activations(x):
|
| 15 |
+
encoder_output = model.vit(x)
|
| 16 |
+
final_activations = encoder_output.last_hidden_state[:,0,:]
|
| 17 |
+
return final_activations
|
| 18 |
+
|
| 19 |
+
def total_variation_loss(img):
|
| 20 |
+
pixel_dif1 = img[:, :, 1:, :] - img[:, :, :-1, :]
|
| 21 |
+
pixel_dif2 = img[:, :, :, 1:] - img[:, :, :, :-1]
|
| 22 |
+
return (torch.sum(torch.abs(pixel_dif1)) + torch.sum(torch.abs(pixel_dif2)))
|
| 23 |
+
|
| 24 |
def process_image(input_image, learning_rate, iterations, n_targets, seed):
|
| 25 |
if input_image is None:
|
| 26 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
image = input_image.convert('RGB')
|
| 29 |
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
|
|
|
| 41 |
|
| 42 |
final_activations = get_encoder_activations(pixel_values)
|
| 43 |
logits = model.classifier(final_activations[0])
|
| 44 |
+
|
| 45 |
+
original_loss = -logits[random_indices].sum()
|
| 46 |
+
tv_loss = total_variation_loss(pixel_values)
|
| 47 |
+
total_loss = original_loss + 0.00625 * tv_loss
|
| 48 |
+
total_loss.backward()
|
| 49 |
|
| 50 |
with torch.no_grad():
|
| 51 |
pixel_values.data += learning_rate * pixel_values.grad.data
|
|
|
|
| 60 |
fn=process_image,
|
| 61 |
inputs=[
|
| 62 |
gr.Image(type="pil"),
|
| 63 |
+
gr.Number(value=10.0, minimum=0, label="Learning Rate"),
|
| 64 |
+
gr.Number(value=0.00625, label="Total Variation Loss"),
|
| 65 |
+
gr.Number(value=1, minimum=1, label="Iterations"),
|
| 66 |
+
gr.Number(value=420, minimum=0, label="Seed"),
|
| 67 |
gr.Number(value=50, minimum=1, maximum=1000, label="Number of Random Target Class Activations to Maximise"),
|
| 68 |
],
|
| 69 |
outputs=[gr.Image(type="numpy", label="ViT-Dreamed Image")]
|