DeIT-Dreamer / app.py
SoggyKiwi's picture
fix various total variation bugs
8c65b05
raw
history blame
2.72 kB
import gradio as gr
import torch
import numpy as np
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
# Load model and feature extractor outside the function
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = ViTImageProcessor.from_pretrained('google/vit-large-patch32-384')
model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384')
model.to(device)
model.eval()
def get_encoder_activations(x):
encoder_output = model.vit(x)
final_activations = encoder_output.last_hidden_state[:,0,:]
return final_activations
def total_variation_loss(img):
pixel_dif1 = img[:, :, 1:, :] - img[:, :, :-1, :]
pixel_dif2 = img[:, :, :, 1:] - img[:, :, :, :-1]
return (torch.sum(torch.abs(pixel_dif1)) + torch.sum(torch.abs(pixel_dif2)))
def process_image(input_image, learning_rate, tv_weight, iterations, n_targets, seed):
if input_image is None:
return None
image = input_image.convert('RGB')
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
pixel_values.requires_grad_(True)
torch.manual_seed(int(seed))
random_indices = torch.randperm(1000)[:int(n_targets)].to(pixel_values.device)
for iteration in range(int(iterations)):
model.zero_grad()
if pixel_values.grad is not None:
pixel_values.grad.data.zero_()
final_activations = get_encoder_activations(pixel_values)
logits = model.classifier(final_activations[0])
original_loss = logits[random_indices].sum()
tv_loss = total_variation_loss(pixel_values)
total_loss = original_loss - tv_weight * tv_loss
total_loss.backward()
with torch.no_grad():
pixel_values.data += learning_rate * pixel_values.grad.data
pixel_values.data = torch.clamp(pixel_values.data, -1, 1)
updated_pixel_values_np = 127.5 + pixel_values.squeeze().permute(1, 2, 0).detach().cpu() * 127.5
updated_pixel_values_np = updated_pixel_values_np.numpy().astype(np.uint8)
return updated_pixel_values_np
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil"),
gr.Number(value=16.0, minimum=0, label="Learning Rate"),
gr.Number(value=0.0001, label="Total Variation Loss"),
gr.Number(value=4, minimum=1, label="Iterations"),
gr.Number(value=420, minimum=0, label="Seed"),
gr.Number(value=500, minimum=1, maximum=1000, label="Number of Random Target Class Activations to Maximise"),
],
outputs=[gr.Image(type="numpy", label="ViT-Dreamed Image")]
)
iface.launch()