DeIT-Dreamer / app.py
SoggyKiwi's picture
use CLS token, tuning default params
2795721
raw
history blame
1.93 kB
import gradio as gr
import torch
import numpy as np
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
# Load model and feature extractor outside the function
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = ViTImageProcessor.from_pretrained('google/vit-large-patch32-384')
model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384')
model.to(device)
model.eval()
def process_image(input_image, learning_rate, iterations):
if input_image is None:
return None
def get_encoder_activations(x):
encoder_output = model.vit(x)
final_activations = encoder_output.last_hidden_state[:,0,:]
return final_activations
image = input_image.convert('RGB')
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
pixel_values.requires_grad_(True)
for iteration in range(int(iterations)):
model.zero_grad()
if pixel_values.grad is not None:
pixel_values.grad.data.zero_()
final_activations = get_encoder_activations(pixel_values)
target_sum = final_activations.sum()
target_sum.backward()
with torch.no_grad():
pixel_values.data += learning_rate * pixel_values.grad.data
pixel_values.data = torch.clamp(pixel_values.data, -1, 1)
updated_pixel_values_np = 127.5 + pixel_values.squeeze().permute(1, 2, 0).detach().cpu() * 127.5
updated_pixel_values_np = updated_pixel_values_np.numpy().astype(np.uint8)
return updated_pixel_values_np
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil"),
gr.Number(value=4.0, label="Learning Rate"),
gr.Number(value=4, label="Iterations")
],
outputs=[gr.Image(type="numpy", label="ViT-Dreamed Image")]
)
iface.launch()