DeIT-Dreamer / app.py
SoggyKiwi's picture
prevent running if image not uploaded
07b1c90
raw
history blame
1.99 kB
import gradio as gr
import torch
import numpy as np
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image
# Load model and feature extractor outside the function
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = ViTImageProcessor.from_pretrained('google/vit-large-patch32-384')
model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384')
model.to(device)
model.eval()
def process_image(input_image, learning_rate, iterations):
if input_image is None:
return None, "Please upload an image."
def get_encoder_activations(x):
encoder_output = model.vit(x)
final_activations = encoder_output.last_hidden_state
return final_activations
image = input_image.convert('RGB')
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
pixel_values.requires_grad_(True)
for iteration in range(int(iterations)):
model.zero_grad()
if pixel_values.grad is not None:
pixel_values.grad.data.zero_()
final_activations = get_encoder_activations(pixel_values)
target_sum = final_activations.sum()
target_sum.backward()
with torch.no_grad():
pixel_values.data += learning_rate * pixel_values.grad.data
pixel_values.data = torch.clamp(pixel_values.data, -1, 1)
updated_pixel_values_np = 127.5 + pixel_values.squeeze().permute(1, 2, 0).detach().cpu() * 127.5
updated_pixel_values_np = updated_pixel_values_np.numpy().astype(np.uint8)
return updated_pixel_values_np
iface = gr.Interface(
fn=process_image,
inputs=[
gr.Image(type="pil"),
gr.Number(value=0.01, label="Learning Rate"),
gr.Number(value=1, label="Iterations")
],
outputs=[gr.outputs.Image(type="numpy", label="ViT-Dreamed Image"), gr.outputs.Textbox()],
live=True
)
iface.launch()