File size: 1,859 Bytes
b7ebb88
03f7bd7
 
 
 
b7ebb88
37ebd45
 
 
 
 
 
03f7bd7
37ebd45
03f7bd7
 
 
 
37ebd45
03f7bd7
 
37ebd45
03f7bd7
 
37ebd45
03f7bd7
 
 
 
37ebd45
03f7bd7
 
 
 
37ebd45
03f7bd7
 
 
 
 
 
b7ebb88
 
 
68fa56c
03f7bd7
68fa56c
 
 
03f7bd7
b7ebb88
 
37ebd45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import gradio as gr
import torch
import numpy as np
from transformers import ViTImageProcessor, ViTForImageClassification
from PIL import Image

# Load model and feature extractor outside the function
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
feature_extractor = ViTImageProcessor.from_pretrained('google/vit-large-patch32-384')
model = ViTForImageClassification.from_pretrained('google/vit-large-patch32-384')
model.to(device)
model.eval()

def process_image(input_image, learning_rate, iterations):
    def get_encoder_activations(x):
        encoder_output = model.vit(x)
        final_activations = encoder_output.last_hidden_state
        return final_activations

    image = input_image.convert('RGB')
    pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
    pixel_values = pixel_values.to(device)
    pixel_values.requires_grad_(True)

    for iteration in range(iterations):
        model.zero_grad()
        if pixel_values.grad is not None:
            pixel_values.grad.data.zero_()

        final_activations = get_encoder_activations(pixel_values)
        target_sum = final_activations.sum()
        target_sum.backward()

        with torch.no_grad():
            pixel_values.data += learning_rate * pixel_values.grad.data
        pixel_values.data = torch.clamp(pixel_values.data, -1, 1)

    updated_pixel_values_np = 127.5 + pixel_values.squeeze().permute(1, 2, 0).detach().cpu() * 127.5
    updated_pixel_values_np = updated_pixel_values_np.numpy().astype(np.uint8)

    return updated_pixel_values_np

iface = gr.Interface(
    fn=process_image,
    inputs=[
        gr.Image(type="pil"), 
        gr.Number(value=0.01, label="Learning Rate"), 
        gr.Number(value=1, label="Iterations")
    ],
    outputs=gr.Image(type="numpy", label="Processed Image")
)

iface.launch()