Spaces:
Running
Running
File size: 6,820 Bytes
1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 10c1c0a 1397f6e 8c95cb1 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 1397f6e 6e2693a 8c95cb1 0986a31 6e2693a 0986a31 6e2693a 0986a31 8c95cb1 0986a31 8c95cb1 6e2693a 8c95cb1 f9a28d9 0986a31 f9a28d9 8c95cb1 0986a31 6e2693a f9a28d9 6e2693a 8c95cb1 f9a28d9 8c95cb1 6e2693a 1397f6e f9a28d9 6e2693a 8c95cb1 6e2693a 8c95cb1 6e2693a 8c95cb1 f9a28d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
from pathlib import Path
import litellm
from crewai import Agent, Task, Crew, Process
from crewai_tools import SerperDevTool
import pdfplumber
from docx import Document
import gradio as gr
# Set up API keys
litellm.api_key = os.getenv('GOOGLE_API_KEY')
os.environ['SERPER_API_KEY'] = os.getenv('SERPER_API_KEY')
# Define the LLM
llm = "gemini/gemini-1.5-flash-exp-0827" # Your LLM model
# Initialize the tool for internet searching capabilities
tool = SerperDevTool()
# Create the CV Analysis Agent
cv_analysis_agent = Agent(
role="CV Analyzer",
goal='Analyze the given CV and extract key skills and experiences and make improvements if needed for portfolio creation.',
verbose=True,
memory=True,
backstory=(
"You are an expert CV Analyzer with a keen eye for detail. Your role is to meticulously examine the provided CV, "
"identifying and extracting key skills, experiences, accomplishments, and areas for improvement. "
"Your analysis should highlight strengths and suggest enhancements that would make the portfolio more competitive."
),
tools=[tool],
llm=llm,
allow_delegation=True
)
# Create the Portfolio Generation Agent
portfolio_generation_agent = Agent(
role='Portfolio Generator',
goal='Generate a professional HTML/CSS/JS responsive landing portfolio webpage based on {cv} analysis.',
verbose=True,
memory=True,
backstory=(
"As a Responsive Portfolio Generator, your expertise lies in creating visually appealing and user-friendly web pages. "
"Based on the CV analysis, you will generate a professional HTML/CSS/JS portfolio. "
"Ensure the design reflects the individual's strengths and experiences while incorporating effective functionality. "
"Consider responsiveness, color schemes, and navigation for an optimal user experience."
),
tools=[tool],
llm=llm,
allow_delegation=False
)
# Research task for CV analysis
cv_analysis_task = Task(
description=(
"Analyze the provided {cv} in detail. Identify and summarize key skills, experiences, and notable accomplishments. "
"Highlight educational background and suggest potential enhancements to improve the overall presentation and competitiveness of the CV."
),
expected_output='A detailed summary of skills, experiences, accomplishments, and improvement suggestions formatted for a portfolio.',
tools=[tool],
agent=cv_analysis_agent,
)
# Writing task for portfolio generation with enhanced UI requirements
portfolio_task = Task(
description=(
"Generate a responsive HTML/CSS portfolio webpage based on the given CV analysis. "
"Include a navbar with the individual's name, and sections for skills, projects, experiences, certifications, and contact information. "
"Ensure the layout is clean and visually appealing with a light/dark theme toggle option. "
"Embed CSS/JS directly into the HTML for easy deployment, and optimize for both desktop and mobile viewing."
),
expected_output='A complete and responsive HTML document ready for deployment, showcasing the individual’s strengths.',
tools=[tool],
agent=portfolio_generation_agent,
async_execution=True,
)
# Function to read CV from PDF or DOCX file
def read_cv_file(file_path):
ext = os.path.splitext(file_path)[1].lower()
cv_content = ""
if ext == '.pdf':
with pdfplumber.open(file_path) as pdf:
for page in pdf.pages:
cv_content += page.extract_text()
elif ext == '.docx':
doc = Document(file_path)
for para in doc.paragraphs:
cv_content += para.text + "\n"
else:
raise ValueError("Unsupported file format. Please use .pdf or .docx.")
return cv_content.strip()
# Create a Crew for processing
crew = Crew(
agents=[cv_analysis_agent, portfolio_generation_agent],
tasks=[cv_analysis_task, portfolio_task],
process=Process.sequential,
)
# Function to process CV and generate portfolio
def process_cv(file):
try:
cv_file_content = read_cv_file(file.name)
result = crew.kickoff(inputs={'cv': cv_file_content})
# Print the entire result object to explore its contents (for debugging)
print(result)
# Convert the result to string
html_output = str(result)
# Use replace to remove '''html''' and ''' from the output
clean_html_output = html_output.replace("```html", '').replace("```", '').strip()
return clean_html_output # Return the cleaned HTML
except Exception as e:
return f"Error: {e}"
def save_html_to_file(html_content):
output_file_path = "Portfolio_generated_by_FiftyBit.html"
with open(output_file_path, "w") as f:
f.write(html_content)
return output_file_path
import html
def upload_file(filepath):
name = Path(filepath).name
html_content = process_cv(filepath) # Get HTML content from the CV
# Clean the HTML content and escape it for proper iframe embedding
clean_html_output = html_content.replace("```html", '').replace("```", '').strip()
escaped_html_content = html.escape(clean_html_output) # Escape HTML content
# Debugging print to check the escaped HTML content
#print("Escaped HTML content:", escaped_html_content)
# Save the cleaned HTML content to a file (if you still want this feature)
file_path = save_html_to_file(clean_html_output)
# Return a full HTML string with embedded iframe for preview
iframe_html = f"""
<iframe srcdoc="{escaped_html_content}" style="width:100%; height:1000px; border:none; overflow:auto;"></iframe>
"""
return iframe_html, gr.UploadButton(visible=False), gr.DownloadButton(label=f"Download Code", value=file_path, visible=True)
def download_file():
return [gr.UploadButton(label=f"Regenerate", visible=True), gr.DownloadButton(visible=False)]
# Gradio App
with gr.Blocks() as demo:
gr.Markdown("<center><h1> CV-2-Portfolio Site Generator</center></h1>")
gr.Markdown("<center><h2>Upload your CV in PDF or DOCX format for analysis and portfolio webpage generation.</center></h2>")
u = gr.UploadButton("Upload CV (.pdf or .docx)", file_count="single")
d = gr.DownloadButton("Download Portfolio", visible=False)
# Use gr.HTML with larger iframe size to display the full preview
output_preview = gr.HTML(
value="<div style='width:100%; height:1000px; border:1px solid #ccc; text-align:center;'>Upload a file to preview the generated portfolio</div>"
)
# Connect the upload button to the upload_file function and update the output preview
u.upload(upload_file, u, [output_preview, u, d])
# Handle download button click
d.click(download_file, None, [u, d])
demo.launch(debug=True) |