File size: 5,239 Bytes
8349bb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import fitz  # PyMuPDF for PDF text extraction
import pytesseract
from PIL import Image
import os

# Set Hugging Face API Key (Set this in Hugging Face Secrets)
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets["HF_TOKEN"]

# Load Free LLM from Hugging Face
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct", model_kwargs={"temperature": 0.5})

# Define Streamlit App
st.set_page_config(page_title="DocuMentorAI", layout="wide")
st.title("📄 DocuMentorAI")
st.write("Upload your CV/Resume and generate professional application documents.")

# File Upload (PDF/Image)
uploaded_file = st.file_uploader("Upload your CV/Resume (PDF or Image)", type=["pdf", "png", "jpg", "jpeg"])

def extract_text_from_pdf(pdf_file):
    """Extract text from a PDF file."""
    text = ""
    with fitz.open(pdf_file) as doc:
        for page in doc:
            text += page.get_text()
    return text

def extract_text_from_image(image_file):
    """Extract text from an image using OCR."""
    image = Image.open(image_file)
    return pytesseract.image_to_string(image)

if uploaded_file:
    file_type = uploaded_file.type
    extracted_text = ""
    
    if file_type == "application/pdf":
        extracted_text = extract_text_from_pdf(uploaded_file)
    else:
        extracted_text = extract_text_from_image(uploaded_file)
    
    st.subheader("Extracted Text from CV/Resume")
    st.text_area("Preview:", extracted_text, height=150)

# Define LLM Prompt Templates
email_template = PromptTemplate.from_template("""
You are an AI assistant helping users craft a professional cold email for a research position.

### Input:
- Recipient: {recipient_name}
- Position: {position_name}
- Research Interests: {research_interests}
- Why this professor/lab: {reason}
- Resume Details: {resume_text}

### Output:
A well-structured, concise cold email with a polite and engaging tone.
""")

cover_letter_template = PromptTemplate.from_template("""
You are an AI assistant generating a professional cover letter.

### Input:
- Job Title: {job_title}
- Company/University: {company}
- Key Skills: {key_skills}
- Resume Details: {resume_text}

### Output:
A polished and formal cover letter.
""")

research_statement_template = PromptTemplate.from_template("""
You are an AI assistant generating a research statement for a Ph.D. application.

### Input:
- Research Interests: {research_interests}
- Academic Background: {resume_text}
- Future Research Goals: {goals}

### Output:
A compelling research statement with a strong academic tone.
""")

sop_template = PromptTemplate.from_template("""
You are an AI assistant writing a Statement of Purpose (SOP) for a master's or Ph.D. program.

### Input:
- Program Name: {program_name}
- University: {university}
- Research Interests: {research_interests}
- Career Goals: {career_goals}
- Resume Details: {resume_text}

### Output:
A structured and professional SOP.
""")

# Create LangChain Chains
email_chain = LLMChain(llm=llm, prompt=email_template)
cover_letter_chain = LLMChain(llm=llm, prompt=cover_letter_template)
research_statement_chain = LLMChain(llm=llm, prompt=research_statement_template)
sop_chain = LLMChain(llm=llm, prompt=sop_template)

# User Inputs for Document Generation
st.subheader("📩 Generate Application Documents")

tab1, tab2, tab3, tab4 = st.tabs(["Cold Email", "Cover Letter", "Research Statement", "SOP"])

with tab1:
    recipient = st.text_input("Recipient Name")
    position = st.text_input("Position Name")
    research_interests = st.text_area("Research Interests")
    reason = st.text_area("Why this professor/lab?")
    if st.button("Generate Cold Email"):
        email = email_chain.run({"recipient_name": recipient, "position_name": position, "research_interests": research_interests, "reason": reason, "resume_text": extracted_text})
        st.text_area("Generated Cold Email", email, height=250)

with tab2:
    job_title = st.text_input("Job Title")
    company = st.text_input("Company/University")
    key_skills = st.text_area("Key Skills")
    if st.button("Generate Cover Letter"):
        cover_letter = cover_letter_chain.run({"job_title": job_title, "company": company, "key_skills": key_skills, "resume_text": extracted_text})
        st.text_area("Generated Cover Letter", cover_letter, height=250)

with tab3:
    research_goals = st.text_area("Future Research Goals")
    if st.button("Generate Research Statement"):
        research_statement = research_statement_chain.run({"research_interests": research_interests, "goals": research_goals, "resume_text": extracted_text})
        st.text_area("Generated Research Statement", research_statement, height=250)

with tab4:
    program_name = st.text_input("Program Name")
    university = st.text_input("University")
    career_goals = st.text_area("Career Goals")
    if st.button("Generate SOP"):
        sop = sop_chain.run({"program_name": program_name, "university": university, "research_interests": research_interests, "career_goals": career_goals, "resume_text": extracted_text})
        st.text_area("Generated SOP", sop, height=250)