Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -9,174 +9,119 @@ import gradio as gr
|
|
9 |
|
10 |
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Define the LLM
|
17 |
llm = "gemini/gemini-1.5-flash-exp-0827" # Your LLM model
|
18 |
|
19 |
# Initialize the tool for internet searching capabilities
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
26 |
verbose=True,
|
27 |
memory=True,
|
28 |
backstory=(
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
),
|
33 |
-
|
34 |
-
tools=[tool],
|
35 |
llm=llm,
|
36 |
allow_delegation=True
|
37 |
)
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
role=
|
42 |
-
goal=
|
43 |
verbose=True,
|
44 |
memory=True,
|
45 |
backstory=(
|
46 |
-
|
47 |
-
|
48 |
-
"Ensure the design reflects the individual's strengths and experiences while incorporating effective functionality. "
|
49 |
-
"Consider responsiveness, color schemes, and navigation for an optimal user experience."
|
50 |
),
|
51 |
tools=[tool],
|
52 |
llm=llm,
|
53 |
allow_delegation=False
|
54 |
)
|
55 |
|
56 |
-
# Research task
|
57 |
-
|
58 |
description=(
|
59 |
-
"
|
60 |
-
"
|
|
|
61 |
),
|
62 |
-
expected_output='A
|
63 |
tools=[tool],
|
64 |
-
agent=
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
portfolio_task = Task(
|
71 |
description=(
|
72 |
-
"
|
73 |
-
"
|
74 |
-
"Ensure the
|
75 |
-
"Embed CSS/JS directly into the HTML for easy deployment, and optimize for both desktop and mobile viewing."
|
76 |
),
|
77 |
-
expected_output='A
|
78 |
tools=[tool],
|
79 |
-
agent=
|
80 |
async_execution=True,
|
|
|
81 |
)
|
82 |
|
83 |
-
# Function to read CV from PDF or DOCX file
|
84 |
-
def read_cv_file(file_path):
|
85 |
-
ext = os.path.splitext(file_path)[1].lower()
|
86 |
-
cv_content = ""
|
87 |
-
|
88 |
-
if ext == '.pdf':
|
89 |
-
with pdfplumber.open(file_path) as pdf:
|
90 |
-
for page in pdf.pages:
|
91 |
-
cv_content += page.extract_text()
|
92 |
-
elif ext == '.docx':
|
93 |
-
doc = Document(file_path)
|
94 |
-
for para in doc.paragraphs:
|
95 |
-
cv_content += para.text + "\n"
|
96 |
-
else:
|
97 |
-
raise ValueError("Unsupported file format. Please use .pdf or .docx.")
|
98 |
-
|
99 |
-
return cv_content.strip()
|
100 |
-
|
101 |
# Create a Crew for processing
|
102 |
crew = Crew(
|
103 |
-
agents=[
|
104 |
-
tasks=[
|
105 |
process=Process.sequential,
|
106 |
)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
# Function to process CV and generate portfolio
|
111 |
-
def process_cv(file):
|
112 |
try:
|
113 |
-
|
114 |
-
result = crew.kickoff(inputs={'
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
# Convert the result to string
|
120 |
-
html_output = str(result)
|
121 |
-
|
122 |
-
# Use replace to remove '''html''' and ''' from the output
|
123 |
-
clean_html_output = html_output.replace("```html", '').replace("```", '').strip()
|
124 |
-
|
125 |
-
return clean_html_output # Return the cleaned HTML
|
126 |
except Exception as e:
|
127 |
-
return f"Error: {e}"
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
def save_html_to_file(html_content):
|
132 |
-
output_file_path = "Portfolio_generated_by_FiftyBit.html"
|
133 |
-
with open(output_file_path, "w") as f:
|
134 |
-
f.write(html_content)
|
135 |
-
return output_file_path
|
136 |
-
|
137 |
-
|
138 |
-
import html
|
139 |
-
|
140 |
-
def upload_file(filepath):
|
141 |
-
name = Path(filepath).name
|
142 |
-
html_content = process_cv(filepath) # Get HTML content from the CV
|
143 |
-
|
144 |
-
# Clean the HTML content and escape it for proper iframe embedding
|
145 |
-
clean_html_output = html_content.replace("```html", '').replace("```", '').strip()
|
146 |
-
escaped_html_content = html.escape(clean_html_output) # Escape HTML content
|
147 |
-
|
148 |
-
# Debugging print to check the escaped HTML content
|
149 |
-
#print("Escaped HTML content:", escaped_html_content)
|
150 |
-
|
151 |
-
# Save the cleaned HTML content to a file (if you still want this feature)
|
152 |
-
file_path = save_html_to_file(clean_html_output)
|
153 |
-
|
154 |
-
# Return a full HTML string with embedded iframe for preview
|
155 |
-
iframe_html = f"""
|
156 |
-
<iframe srcdoc="{escaped_html_content}" style="width:100%; height:1000px; border:none; overflow:auto;"></iframe>
|
157 |
-
"""
|
158 |
-
return iframe_html, gr.UploadButton(visible=False), gr.DownloadButton(label=f"Download Code", value=file_path, visible=True)
|
159 |
-
|
160 |
-
def download_file():
|
161 |
-
return [gr.UploadButton(label=f"Regenerate", visible=True), gr.DownloadButton(visible=False)]
|
162 |
-
|
163 |
-
# Gradio App
|
164 |
-
with gr.Blocks() as demo:
|
165 |
-
gr.Markdown("<center><h1> CV-2-Portfolio Site Generator</center></h1>")
|
166 |
-
gr.Markdown("<center><h2>Upload your CV in PDF or DOCX format for analysis and portfolio webpage generation.</center></h2>")
|
167 |
|
168 |
-
u = gr.UploadButton("Upload CV (.pdf or .docx)", file_count="single")
|
169 |
-
d = gr.DownloadButton("Download Portfolio", visible=False)
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
)
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
u.upload(upload_file, u, [output_preview, u, d])
|
178 |
|
179 |
-
|
180 |
-
d.click(download_file, None, [u, d])
|
181 |
|
182 |
-
|
|
|
|
|
|
9 |
|
10 |
|
11 |
|
12 |
+
|
13 |
+
# Error handling for API keys
|
14 |
+
try:
|
15 |
+
# Set up API keys
|
16 |
+
litellm.api_key = os.getenv('GOOGLE_API_KEY')
|
17 |
+
os.environ['SERPER_API_KEY'] = os.getenv('SERPER_API_KEY')
|
18 |
+
|
19 |
+
if not litellm.api_key or not os.environ['SERPER_API_KEY']:
|
20 |
+
raise ValueError("API keys are missing. Please ensure both Google API Key and SERPER API Key are set.")
|
21 |
+
except Exception as e:
|
22 |
+
print(f"Error setting up API keys: {e}")
|
23 |
+
exit()
|
24 |
|
25 |
# Define the LLM
|
26 |
llm = "gemini/gemini-1.5-flash-exp-0827" # Your LLM model
|
27 |
|
28 |
# Initialize the tool for internet searching capabilities
|
29 |
+
try:
|
30 |
+
tool = SerperDevTool(search_url="https://google.serper.dev/scholar", n_results=10)
|
31 |
+
except Exception as e:
|
32 |
+
print(f"Error initializing search tool: {e}")
|
33 |
+
exit()
|
34 |
+
|
35 |
+
# Research agent
|
36 |
+
research_agent = Agent(
|
37 |
+
role="Research Assistant",
|
38 |
+
goal='Discover and retrieve the latest groundbreaking papers and publications on {topic}.',
|
39 |
verbose=True,
|
40 |
memory=True,
|
41 |
backstory=(
|
42 |
+
"You are an expert researcher who specializes in locating the most recent and relevant research papers. "
|
43 |
+
"You focus on analyzing research from credible sources like Google Scholar, ensuring they are closely aligned with the {topic}. "
|
44 |
+
"Your insights help refine ongoing research by identifying gaps and suggesting areas for improvement."
|
45 |
+
),
|
|
|
|
|
46 |
llm=llm,
|
47 |
allow_delegation=True
|
48 |
)
|
49 |
|
50 |
+
# Writer agent
|
51 |
+
writer_agent = Agent(
|
52 |
+
role="Research Key Points Writer",
|
53 |
+
goal="Extract and present the key points of relevant research papers, including publication links.",
|
54 |
verbose=True,
|
55 |
memory=True,
|
56 |
backstory=(
|
57 |
+
"As a skilled research writer, your task is to extract key information such as objectives, methodologies, findings, and future improvements. "
|
58 |
+
"You will list the publication links in an organized manner."
|
|
|
|
|
59 |
),
|
60 |
tools=[tool],
|
61 |
llm=llm,
|
62 |
allow_delegation=False
|
63 |
)
|
64 |
|
65 |
+
# Research task
|
66 |
+
research_task = Task(
|
67 |
description=(
|
68 |
+
"Identify all relevant research papers on {topic}. "
|
69 |
+
"For each paper, extract key points such as the main objectives, methodology, findings, and any significant flaws in the study. "
|
70 |
+
"Highlight gaps in the research and suggest possible improvements."
|
71 |
),
|
72 |
+
expected_output='A structured list of key points from relevant papers, including strengths, weaknesses, and improvement suggestions.',
|
73 |
tools=[tool],
|
74 |
+
agent=research_agent,
|
75 |
)
|
76 |
|
77 |
+
# Writer task
|
78 |
+
writer_task = Task(
|
|
|
|
|
79 |
description=(
|
80 |
+
"Compose a report highlighting the key points from {topic}-related publications. "
|
81 |
+
"The report should include the main objectives, methodologies, and findings of each paper, along with a link to the publication. "
|
82 |
+
"Ensure that the information is accurate, clear and well-organized."
|
|
|
83 |
),
|
84 |
+
expected_output='A markdown file (.md) containing key points and publication links for each paper.',
|
85 |
tools=[tool],
|
86 |
+
agent=writer_agent,
|
87 |
async_execution=True,
|
88 |
+
output_file='key_points_report.md'
|
89 |
)
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Create a Crew for processing
|
92 |
crew = Crew(
|
93 |
+
agents=[research_agent, writer_agent],
|
94 |
+
tasks=[research_task, writer_task],
|
95 |
process=Process.sequential,
|
96 |
)
|
97 |
|
98 |
+
# Define a function that will take the research topic as input and return the markdown output
|
99 |
+
def generate_report(topic):
|
|
|
|
|
100 |
try:
|
101 |
+
# Kickoff the Crew process with the provided topic
|
102 |
+
result = crew.kickoff(inputs={'topic': topic})
|
103 |
+
# Read the generated markdown file (assuming report is saved as 'key_points_report.md')
|
104 |
+
with open('key_points_report.md', 'r') as file:
|
105 |
+
markdown_output = file.read()
|
106 |
+
return markdown_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
except Exception as e:
|
108 |
+
return f"Error during processing: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
|
|
|
|
110 |
|
111 |
+
# Gradio Interface
|
112 |
+
def gradio_interface():
|
113 |
+
# Use Column to organize input and output in vertical layout
|
114 |
+
with gr.Blocks() as interface:
|
115 |
+
gr.Markdown("<center><h1>AI Research Assistant Agent-Key Points Extractor</h1></center>")
|
116 |
+
with gr.Column():
|
117 |
+
topic_input = gr.Textbox(lines=2, placeholder="Enter your research topic/keywords", label="Research Topic/Keywords")
|
118 |
+
result_output = gr.Markdown(label="Key Points Output")
|
119 |
+
submit_button = gr.Button("Generate Report")
|
120 |
|
121 |
+
submit_button.click(generate_report, inputs=topic_input, outputs=result_output)
|
|
|
122 |
|
123 |
+
interface.launch(debug=True)
|
|
|
124 |
|
125 |
+
# Run the Gradio interface
|
126 |
+
if __name__ == "__main__":
|
127 |
+
gradio_interface()
|