Upload 3 files
Browse files- app.py +68 -30
- models/watermark_faster.py +14 -16
    	
        app.py
    CHANGED
    
    | @@ -1,13 +1,18 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            from models.watermark_faster import watermark_model
         | 
| 3 | 
            -
            import pdb
         | 
| 4 | 
             
            from options import get_parser_main_model
         | 
| 5 |  | 
| 6 | 
             
            opts = get_parser_main_model().parse_args()
         | 
| 7 | 
            -
            model = watermark_model(language= | 
| 8 | 
            -
            def watermark_embed_demo(raw):
         | 
| 9 |  | 
| 10 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 | 
             
                return watermarked_text
         | 
| 12 |  | 
| 13 | 
             
            def watermark_extract(raw):
         | 
| @@ -16,42 +21,75 @@ def watermark_extract(raw): | |
| 16 |  | 
| 17 | 
             
                return f"{confidence:.2f}%"
         | 
| 18 |  | 
| 19 | 
            -
            def precise_watermark_detect(raw):
         | 
| 20 | 
            -
                is_watermark, p_value, n, ones, z_value = model.watermark_detector_precise(raw)
         | 
| 21 | 
             
                confidence = (1 - p_value) * 100
         | 
| 22 |  | 
| 23 | 
             
                return f"{confidence:.2f}%"
         | 
| 24 |  | 
| 25 | 
            -
             | 
| 26 | 
             
            demo = gr.Blocks()
         | 
| 27 | 
             
            with demo:
         | 
| 28 | 
             
                with gr.Column():
         | 
| 29 | 
            -
                    gr. | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 50 |  | 
| 51 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 52 |  | 
|  | |
| 53 |  | 
| 54 | 
             
            if __name__ == "__main__":
         | 
| 55 | 
             
                gr.close_all()
         | 
| 56 | 
             
                demo.title = "Watermarking Text Generated by Black-Box Language Models"
         | 
| 57 | 
            -
                demo.launch()
         | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
             
            from models.watermark_faster import watermark_model
         | 
|  | |
| 3 | 
             
            from options import get_parser_main_model
         | 
| 4 |  | 
| 5 | 
             
            opts = get_parser_main_model().parse_args()
         | 
| 6 | 
            +
            model = watermark_model(language=opts.language, mode=opts.mode, tau_word=opts.tau_word, lamda=opts.lamda)
         | 
|  | |
| 7 |  | 
| 8 | 
            +
            def create_model(language,tau_word):
         | 
| 9 | 
            +
                global model
         | 
| 10 | 
            +
                model = watermark_model(language=language, mode=opts.mode, tau_word=tau_word, lamda=opts.lamda)
         | 
| 11 | 
            +
                # gr.update(visible=True)
         | 
| 12 | 
            +
                return language,tau_word
         | 
| 13 | 
            +
            def watermark_embed_demo(raw,tau_word):
         | 
| 14 | 
            +
             | 
| 15 | 
            +
                watermarked_text = model.embed(raw,tau_word)
         | 
| 16 | 
             
                return watermarked_text
         | 
| 17 |  | 
| 18 | 
             
            def watermark_extract(raw):
         | 
|  | |
| 21 |  | 
| 22 | 
             
                return f"{confidence:.2f}%"
         | 
| 23 |  | 
| 24 | 
            +
            def precise_watermark_detect(raw,tau_word):
         | 
| 25 | 
            +
                is_watermark, p_value, n, ones, z_value = model.watermark_detector_precise(raw,tau_word)
         | 
| 26 | 
             
                confidence = (1 - p_value) * 100
         | 
| 27 |  | 
| 28 | 
             
                return f"{confidence:.2f}%"
         | 
| 29 |  | 
|  | |
| 30 | 
             
            demo = gr.Blocks()
         | 
| 31 | 
             
            with demo:
         | 
| 32 | 
             
                with gr.Column():
         | 
| 33 | 
            +
                    with gr.Row():
         | 
| 34 | 
            +
                        with gr.Column(scale=9):
         | 
| 35 | 
            +
                            gr.Markdown(
         | 
| 36 | 
            +
                            """
         | 
| 37 | 
            +
                            # 💦[Watermarking Text Generated by Black-Box Language Models](https://arxiv.org/abs/2305.08883)
         | 
| 38 | 
            +
                            """
         | 
| 39 | 
            +
                            )
         | 
| 40 | 
            +
                        language = gr.Dropdown(
         | 
| 41 | 
            +
                            label="Language", choices=["English", "Chinese"], value="English"
         | 
| 42 | 
            +
                        )
         | 
| 43 | 
            +
                        tau_word = gr.Number(label="tau_word", value=0.8)
         | 
| 44 | 
            +
                            
         | 
| 45 | 
            +
                # with gr.Column():
         | 
| 46 | 
            +
                #     with gr.Row():
         | 
| 47 | 
            +
                #         gr.Markdown("# Watermarking Text Generated by Black-Box Language Models")
         | 
| 48 | 
            +
                #         with gr.Row(scale=0.25):
         | 
| 49 | 
            +
                #             language = gr.Dropdown(
         | 
| 50 | 
            +
                #                 label="Language", choices=["English", "Chinese"], value="English"
         | 
| 51 | 
            +
                #             )
         | 
| 52 | 
            +
                #             tau_word = gr.Number(label="tau_word", value=0.8)#gr.Slider(0, 1, value=0.8, label="tau_word", info="Choose between 0 and 1")
         | 
| 53 | 
            +
                    # model_button = gr.Button("Load Model")
         | 
| 54 | 
            +
                    # inputs = [language,tau_word]
         | 
| 55 | 
            +
                    # model_button.click(fn=create_model, inputs=inputs,outputs=[language,tau_word])
         | 
| 56 | 
            +
                    with gr.Tab("Welcome"):
         | 
| 57 | 
            +
                        gr.Markdown(
         | 
| 58 | 
            +
                                    """
         | 
| 59 | 
            +
                                    This space exhibits a watermarking technique that allows third parties to independently inject an authentication watermark into generated text. 
         | 
| 60 | 
            +
                                    We provide implementations for both English and Chinese text (you can select the respective language in the top right corner). 
         | 
| 61 | 
            +
                                    Furthermore, you can adjust the value of $\\tau_{word}$ to control the similarity between the original text and the watermarked text. 
         | 
| 62 | 
            +
                                    We recommend setting $\\tau_{word}$ at 0.8 for English and 0.75 for Chinese. 
         | 
| 63 | 
            +
                                    Generally, a larger $\\tau_{word}$ increases the similarity between the original and watermarked text, but it also weakens the strength of the watermark.
         | 
| 64 | 
            +
                                    More details can be found in our [ArXiv preprint](https://arxiv.org/abs/2305.08883).
         | 
| 65 | 
            +
                                    """
         | 
| 66 | 
            +
                                    )
         | 
| 67 | 
            +
                    with gr.Tab("Watermark Injection & Detection"):
         | 
| 68 | 
            +
                        language.change(fn=create_model, inputs=language,outputs=language)
         | 
| 69 | 
            +
                        with gr.Row():
         | 
| 70 | 
            +
                            inputs = gr.TextArea(label="Input text", placeholder="Copy your text here...")
         | 
| 71 | 
            +
                            output = gr.Textbox(label="Watermarked Text",lines=7)
         | 
| 72 | 
            +
                        analysis_button = gr.Button("Inject Watermark")
         | 
| 73 | 
            +
                        inputs_embed = [inputs,tau_word]
         | 
| 74 | 
            +
                        analysis_button.click(fn=watermark_embed_demo, inputs=inputs_embed, outputs=output)
         | 
| 75 | 
            +
                        
         | 
| 76 | 
            +
                        inputs_w = gr.TextArea(label="Text to Analyze", placeholder="Copy your watermarked text here...")
         | 
| 77 | 
            +
                        with gr.Row():
         | 
| 78 | 
            +
                            mode = gr.Dropdown(
         | 
| 79 | 
            +
                                label="Detection Mode", choices=["Fast", "Precise"], value="Fast"
         | 
| 80 | 
            +
                            )
         | 
| 81 | 
            +
                            output_detect = gr.Textbox(label="Confidence (the likelihood of the text containing a watermark)")
         | 
| 82 | 
            +
                        detect_button = gr.Button("Detect")
         | 
| 83 |  | 
| 84 | 
            +
                        def detect_watermark(inputs_w, mode, tau_word):
         | 
| 85 | 
            +
                            if mode == "Fast":
         | 
| 86 | 
            +
                                return watermark_extract(inputs_w)
         | 
| 87 | 
            +
                            else:
         | 
| 88 | 
            +
                                return precise_watermark_detect(inputs_w,tau_word)
         | 
| 89 |  | 
| 90 | 
            +
                        detect_button.click(fn=detect_watermark, inputs=[inputs_w, mode, tau_word], outputs=output_detect)
         | 
| 91 |  | 
| 92 | 
             
            if __name__ == "__main__":
         | 
| 93 | 
             
                gr.close_all()
         | 
| 94 | 
             
                demo.title = "Watermarking Text Generated by Black-Box Language Models"
         | 
| 95 | 
            +
                demo.launch(share = True, server_port=8898)
         | 
    	
        models/watermark_faster.py
    CHANGED
    
    | @@ -8,8 +8,8 @@ import hashlib | |
| 8 | 
             
            from scipy.stats import norm
         | 
| 9 | 
             
            import gensim
         | 
| 10 | 
             
            import pdb
         | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
             
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 14 |  | 
| 15 | 
             
            from transformers import BertForMaskedLM, BertTokenizer, RobertaForSequenceClassification, RobertaTokenizer
         | 
| @@ -21,8 +21,6 @@ import paddle | |
| 21 | 
             
            from jieba import posseg
         | 
| 22 | 
             
            paddle.enable_static()
         | 
| 23 | 
             
            import re
         | 
| 24 | 
            -
            nltk.download('punkt')
         | 
| 25 | 
            -
            nltk.download('averaged_perceptron_tagger')
         | 
| 26 | 
             
            def cut_sent(para):
         | 
| 27 | 
             
                para = re.sub('([。!?\?])([^”’])', r'\1\n\2', para)  
         | 
| 28 | 
             
                para = re.sub('([。!?\?][”’])([^,。!?\?\n ])', r'\1\n\2', para)  
         | 
| @@ -70,6 +68,7 @@ class watermark_model: | |
| 70 | 
             
                        self.w2v_model = api.load("glove-wiki-gigaword-100")
         | 
| 71 | 
             
                        nltk.download('stopwords')
         | 
| 72 | 
             
                        self.stop_words = set(stopwords.words('english'))
         | 
|  | |
| 73 |  | 
| 74 | 
             
                def cut(self,ori_text,text_len):
         | 
| 75 | 
             
                    if self.language == 'Chinese':
         | 
| @@ -273,8 +272,7 @@ class watermark_model: | |
| 273 | 
             
                    return all_processed_tokens,new_index_space
         | 
| 274 |  | 
| 275 |  | 
| 276 | 
            -
                def filter_candidates(self, init_candidates_list, tokens, index_space, input_text):
         | 
| 277 | 
            -
                    
         | 
| 278 | 
             
                    all_context_word_similarity_scores = self.context_word_sim(init_candidates_list, tokens, index_space, input_text)
         | 
| 279 |  | 
| 280 | 
             
                    all_sentence_similarity_scores = self.sentence_sim(init_candidates_list, tokens, index_space, input_text)
         | 
| @@ -287,7 +285,7 @@ class watermark_model: | |
| 287 | 
             
                        for idx, candidate in enumerate(init_candidates):
         | 
| 288 | 
             
                            global_word_similarity_score = self.global_word_sim(tokens[masked_token_index], candidate)
         | 
| 289 | 
             
                            word_similarity_score = self.lamda*context_word_similarity_scores[idx]+(1-self.lamda)*global_word_similarity_score
         | 
| 290 | 
            -
                            if word_similarity_score >=  | 
| 291 | 
             
                                filtered_candidates.append((candidate, word_similarity_score))
         | 
| 292 |  | 
| 293 | 
             
                        if len(filtered_candidates) >= 1:
         | 
| @@ -320,7 +318,7 @@ class watermark_model: | |
| 320 |  | 
| 321 | 
             
                    return best_candidates, new_index_space
         | 
| 322 |  | 
| 323 | 
            -
                def watermark_embed(self,text):
         | 
| 324 | 
             
                    input_text = text
         | 
| 325 | 
             
                    # Tokenize the input text
         | 
| 326 | 
             
                    tokens = self.tokenizer.tokenize(input_text) 
         | 
| @@ -344,7 +342,7 @@ class watermark_model: | |
| 344 | 
             
                    init_candidates, new_index_space = self.candidates_gen(tokens,index_space,input_text, 8, 0)
         | 
| 345 | 
             
                    if len(new_index_space)==0:
         | 
| 346 | 
             
                        return text
         | 
| 347 | 
            -
                    enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,input_text)
         | 
| 348 |  | 
| 349 | 
             
                    enhanced_candidates, new_index_space = self.get_candidate_encodings(tokens, enhanced_candidates, new_index_space)
         | 
| 350 |  | 
| @@ -356,7 +354,7 @@ class watermark_model: | |
| 356 | 
             
                        watermarked_text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text)
         | 
| 357 | 
             
                    return watermarked_text
         | 
| 358 |  | 
| 359 | 
            -
                def embed(self, ori_text):
         | 
| 360 | 
             
                    sents = self.sent_tokenize(ori_text)
         | 
| 361 | 
             
                    sents = [s for s in sents if s.strip()]
         | 
| 362 | 
             
                    num_sents = len(sents)
         | 
| @@ -369,9 +367,9 @@ class watermark_model: | |
| 369 | 
             
                            sent_pair = sents[i]
         | 
| 370 | 
             
                        # keywords = jieba.analyse.extract_tags(sent_pair, topK=5, withWeight=False)
         | 
| 371 | 
             
                        if len(watermarked_text) == 0:
         | 
| 372 | 
            -
                            watermarked_text = self.watermark_embed(sent_pair)
         | 
| 373 | 
             
                        else:
         | 
| 374 | 
            -
                            watermarked_text = watermarked_text + self.watermark_embed(sent_pair)
         | 
| 375 | 
             
                    if len(self.get_encodings_fast(ori_text)) == 0:
         | 
| 376 | 
             
                        # print(ori_text)
         | 
| 377 | 
             
                        return ''
         | 
| @@ -411,7 +409,7 @@ class watermark_model: | |
| 411 | 
             
                    is_watermark = z >= threshold
         | 
| 412 | 
             
                    return is_watermark, p_value, n, ones, z
         | 
| 413 |  | 
| 414 | 
            -
                def get_encodings_precise(self, text):
         | 
| 415 | 
             
                    # pdb.set_trace()
         | 
| 416 | 
             
                    sents = self.sent_tokenize(text)
         | 
| 417 | 
             
                    sents = [s for s in sents if s.strip()]
         | 
| @@ -441,7 +439,7 @@ class watermark_model: | |
| 441 | 
             
                            continue
         | 
| 442 |  | 
| 443 | 
             
                        init_candidates, new_index_space = self.candidates_gen(tokens,index_space,sent_pair, 8, 0)
         | 
| 444 | 
            -
                        enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,sent_pair)
         | 
| 445 |  | 
| 446 | 
             
                        # pdb.set_trace()
         | 
| 447 | 
             
                        for j,idx in enumerate(new_index_space):
         | 
| @@ -451,9 +449,9 @@ class watermark_model: | |
| 451 | 
             
                    return encodings
         | 
| 452 |  | 
| 453 |  | 
| 454 | 
            -
                def watermark_detector_precise(self,text,alpha=0.05):
         | 
| 455 | 
             
                    p = 0.5
         | 
| 456 | 
            -
                    encodings = self.get_encodings_precise(text)
         | 
| 457 | 
             
                    n = len(encodings)
         | 
| 458 | 
             
                    ones = sum(encodings)
         | 
| 459 | 
             
                    if n == 0:
         | 
|  | |
| 8 | 
             
            from scipy.stats import norm
         | 
| 9 | 
             
            import gensim
         | 
| 10 | 
             
            import pdb
         | 
| 11 | 
            +
            from transformers import BertForMaskedLM as WoBertForMaskedLM
         | 
| 12 | 
            +
            from wobert import WoBertTokenizer
         | 
| 13 | 
             
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 14 |  | 
| 15 | 
             
            from transformers import BertForMaskedLM, BertTokenizer, RobertaForSequenceClassification, RobertaTokenizer
         | 
|  | |
| 21 | 
             
            from jieba import posseg
         | 
| 22 | 
             
            paddle.enable_static()
         | 
| 23 | 
             
            import re
         | 
|  | |
|  | |
| 24 | 
             
            def cut_sent(para):
         | 
| 25 | 
             
                para = re.sub('([。!?\?])([^”’])', r'\1\n\2', para)  
         | 
| 26 | 
             
                para = re.sub('([。!?\?][”’])([^,。!?\?\n ])', r'\1\n\2', para)  
         | 
|  | |
| 68 | 
             
                        self.w2v_model = api.load("glove-wiki-gigaword-100")
         | 
| 69 | 
             
                        nltk.download('stopwords')
         | 
| 70 | 
             
                        self.stop_words = set(stopwords.words('english'))
         | 
| 71 | 
            +
                        self.nlp = spacy.load('en_core_web_sm')
         | 
| 72 |  | 
| 73 | 
             
                def cut(self,ori_text,text_len):
         | 
| 74 | 
             
                    if self.language == 'Chinese':
         | 
|  | |
| 272 | 
             
                    return all_processed_tokens,new_index_space
         | 
| 273 |  | 
| 274 |  | 
| 275 | 
            +
                def filter_candidates(self, init_candidates_list, tokens, index_space, input_text, tau_word):
         | 
|  | |
| 276 | 
             
                    all_context_word_similarity_scores = self.context_word_sim(init_candidates_list, tokens, index_space, input_text)
         | 
| 277 |  | 
| 278 | 
             
                    all_sentence_similarity_scores = self.sentence_sim(init_candidates_list, tokens, index_space, input_text)
         | 
|  | |
| 285 | 
             
                        for idx, candidate in enumerate(init_candidates):
         | 
| 286 | 
             
                            global_word_similarity_score = self.global_word_sim(tokens[masked_token_index], candidate)
         | 
| 287 | 
             
                            word_similarity_score = self.lamda*context_word_similarity_scores[idx]+(1-self.lamda)*global_word_similarity_score
         | 
| 288 | 
            +
                            if word_similarity_score >= tau_word and sentence_similarity_scores[idx] >= self.tau_sent:
         | 
| 289 | 
             
                                filtered_candidates.append((candidate, word_similarity_score))
         | 
| 290 |  | 
| 291 | 
             
                        if len(filtered_candidates) >= 1:
         | 
|  | |
| 318 |  | 
| 319 | 
             
                    return best_candidates, new_index_space
         | 
| 320 |  | 
| 321 | 
            +
                def watermark_embed(self,text,tau_word):
         | 
| 322 | 
             
                    input_text = text
         | 
| 323 | 
             
                    # Tokenize the input text
         | 
| 324 | 
             
                    tokens = self.tokenizer.tokenize(input_text) 
         | 
|  | |
| 342 | 
             
                    init_candidates, new_index_space = self.candidates_gen(tokens,index_space,input_text, 8, 0)
         | 
| 343 | 
             
                    if len(new_index_space)==0:
         | 
| 344 | 
             
                        return text
         | 
| 345 | 
            +
                    enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,input_text,tau_word)
         | 
| 346 |  | 
| 347 | 
             
                    enhanced_candidates, new_index_space = self.get_candidate_encodings(tokens, enhanced_candidates, new_index_space)
         | 
| 348 |  | 
|  | |
| 354 | 
             
                        watermarked_text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text)
         | 
| 355 | 
             
                    return watermarked_text
         | 
| 356 |  | 
| 357 | 
            +
                def embed(self, ori_text, tau_word):
         | 
| 358 | 
             
                    sents = self.sent_tokenize(ori_text)
         | 
| 359 | 
             
                    sents = [s for s in sents if s.strip()]
         | 
| 360 | 
             
                    num_sents = len(sents)
         | 
|  | |
| 367 | 
             
                            sent_pair = sents[i]
         | 
| 368 | 
             
                        # keywords = jieba.analyse.extract_tags(sent_pair, topK=5, withWeight=False)
         | 
| 369 | 
             
                        if len(watermarked_text) == 0:
         | 
| 370 | 
            +
                            watermarked_text = self.watermark_embed(sent_pair, tau_word)
         | 
| 371 | 
             
                        else:
         | 
| 372 | 
            +
                            watermarked_text = watermarked_text + self.watermark_embed(sent_pair, tau_word)
         | 
| 373 | 
             
                    if len(self.get_encodings_fast(ori_text)) == 0:
         | 
| 374 | 
             
                        # print(ori_text)
         | 
| 375 | 
             
                        return ''
         | 
|  | |
| 409 | 
             
                    is_watermark = z >= threshold
         | 
| 410 | 
             
                    return is_watermark, p_value, n, ones, z
         | 
| 411 |  | 
| 412 | 
            +
                def get_encodings_precise(self, text, tau_word):
         | 
| 413 | 
             
                    # pdb.set_trace()
         | 
| 414 | 
             
                    sents = self.sent_tokenize(text)
         | 
| 415 | 
             
                    sents = [s for s in sents if s.strip()]
         | 
|  | |
| 439 | 
             
                            continue
         | 
| 440 |  | 
| 441 | 
             
                        init_candidates, new_index_space = self.candidates_gen(tokens,index_space,sent_pair, 8, 0)
         | 
| 442 | 
            +
                        enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,sent_pair,tau_word)
         | 
| 443 |  | 
| 444 | 
             
                        # pdb.set_trace()
         | 
| 445 | 
             
                        for j,idx in enumerate(new_index_space):
         | 
|  | |
| 449 | 
             
                    return encodings
         | 
| 450 |  | 
| 451 |  | 
| 452 | 
            +
                def watermark_detector_precise(self,text,tau_word,alpha=0.05):
         | 
| 453 | 
             
                    p = 0.5
         | 
| 454 | 
            +
                    encodings = self.get_encodings_precise(text,tau_word)
         | 
| 455 | 
             
                    n = len(encodings)
         | 
| 456 | 
             
                    ones = sum(encodings)
         | 
| 457 | 
             
                    if n == 0:
         |