Snowball commited on
Commit
765c2fe
·
1 Parent(s): 1c0426c

Upload 3 files

Browse files
Files changed (2) hide show
  1. app.py +68 -30
  2. models/watermark_faster.py +14 -16
app.py CHANGED
@@ -1,13 +1,18 @@
1
  import gradio as gr
2
  from models.watermark_faster import watermark_model
3
- import pdb
4
  from options import get_parser_main_model
5
 
6
  opts = get_parser_main_model().parse_args()
7
- model = watermark_model(language='English', mode=opts.mode, tau_word=0.8, lamda=0.83)
8
- def watermark_embed_demo(raw):
9
 
10
- watermarked_text = model.embed(raw)
 
 
 
 
 
 
 
11
  return watermarked_text
12
 
13
  def watermark_extract(raw):
@@ -16,42 +21,75 @@ def watermark_extract(raw):
16
 
17
  return f"{confidence:.2f}%"
18
 
19
- def precise_watermark_detect(raw):
20
- is_watermark, p_value, n, ones, z_value = model.watermark_detector_precise(raw)
21
  confidence = (1 - p_value) * 100
22
 
23
  return f"{confidence:.2f}%"
24
 
25
-
26
  demo = gr.Blocks()
27
  with demo:
28
  with gr.Column():
29
- gr.Markdown("# Watermarking Text Generated by Black-Box Language Models")
30
-
31
- inputs = gr.TextArea(label="Input text", placeholder="Copy your text here...")
32
- output = gr.Textbox(label="Watermarked Text")
33
- analysis_button = gr.Button("Inject Watermark")
34
- inputs_embed = [inputs]
35
- analysis_button.click(fn=watermark_embed_demo, inputs=inputs_embed, outputs=output)
36
-
37
- inputs_w = gr.TextArea(label="Text to Analyze", placeholder="Copy your watermarked text here...")
38
-
39
- mode = gr.Dropdown(
40
- label="Detection Mode", choices=["Fast", "Precise"], default="Fast"
41
- )
42
- output_detect = gr.Textbox(label="Confidence (the likelihood of the text containing a watermark)")
43
- detect_button = gr.Button("Detect")
44
-
45
- def detect_watermark(inputs_w, mode):
46
- if mode == "Fast":
47
- return watermark_extract(inputs_w)
48
- else:
49
- return precise_watermark_detect(inputs_w)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
- detect_button.click(fn=detect_watermark, inputs=[inputs_w, mode], outputs=output_detect)
 
 
 
 
52
 
 
53
 
54
  if __name__ == "__main__":
55
  gr.close_all()
56
  demo.title = "Watermarking Text Generated by Black-Box Language Models"
57
- demo.launch()
 
1
  import gradio as gr
2
  from models.watermark_faster import watermark_model
 
3
  from options import get_parser_main_model
4
 
5
  opts = get_parser_main_model().parse_args()
6
+ model = watermark_model(language=opts.language, mode=opts.mode, tau_word=opts.tau_word, lamda=opts.lamda)
 
7
 
8
+ def create_model(language,tau_word):
9
+ global model
10
+ model = watermark_model(language=language, mode=opts.mode, tau_word=tau_word, lamda=opts.lamda)
11
+ # gr.update(visible=True)
12
+ return language,tau_word
13
+ def watermark_embed_demo(raw,tau_word):
14
+
15
+ watermarked_text = model.embed(raw,tau_word)
16
  return watermarked_text
17
 
18
  def watermark_extract(raw):
 
21
 
22
  return f"{confidence:.2f}%"
23
 
24
+ def precise_watermark_detect(raw,tau_word):
25
+ is_watermark, p_value, n, ones, z_value = model.watermark_detector_precise(raw,tau_word)
26
  confidence = (1 - p_value) * 100
27
 
28
  return f"{confidence:.2f}%"
29
 
 
30
  demo = gr.Blocks()
31
  with demo:
32
  with gr.Column():
33
+ with gr.Row():
34
+ with gr.Column(scale=9):
35
+ gr.Markdown(
36
+ """
37
+ # 💦[Watermarking Text Generated by Black-Box Language Models](https://arxiv.org/abs/2305.08883)
38
+ """
39
+ )
40
+ language = gr.Dropdown(
41
+ label="Language", choices=["English", "Chinese"], value="English"
42
+ )
43
+ tau_word = gr.Number(label="tau_word", value=0.8)
44
+
45
+ # with gr.Column():
46
+ # with gr.Row():
47
+ # gr.Markdown("# Watermarking Text Generated by Black-Box Language Models")
48
+ # with gr.Row(scale=0.25):
49
+ # language = gr.Dropdown(
50
+ # label="Language", choices=["English", "Chinese"], value="English"
51
+ # )
52
+ # tau_word = gr.Number(label="tau_word", value=0.8)#gr.Slider(0, 1, value=0.8, label="tau_word", info="Choose between 0 and 1")
53
+ # model_button = gr.Button("Load Model")
54
+ # inputs = [language,tau_word]
55
+ # model_button.click(fn=create_model, inputs=inputs,outputs=[language,tau_word])
56
+ with gr.Tab("Welcome"):
57
+ gr.Markdown(
58
+ """
59
+ This space exhibits a watermarking technique that allows third parties to independently inject an authentication watermark into generated text.
60
+ We provide implementations for both English and Chinese text (you can select the respective language in the top right corner).
61
+ Furthermore, you can adjust the value of $\\tau_{word}$ to control the similarity between the original text and the watermarked text.
62
+ We recommend setting $\\tau_{word}$ at 0.8 for English and 0.75 for Chinese.
63
+ Generally, a larger $\\tau_{word}$ increases the similarity between the original and watermarked text, but it also weakens the strength of the watermark.
64
+ More details can be found in our [ArXiv preprint](https://arxiv.org/abs/2305.08883).
65
+ """
66
+ )
67
+ with gr.Tab("Watermark Injection & Detection"):
68
+ language.change(fn=create_model, inputs=language,outputs=language)
69
+ with gr.Row():
70
+ inputs = gr.TextArea(label="Input text", placeholder="Copy your text here...")
71
+ output = gr.Textbox(label="Watermarked Text",lines=7)
72
+ analysis_button = gr.Button("Inject Watermark")
73
+ inputs_embed = [inputs,tau_word]
74
+ analysis_button.click(fn=watermark_embed_demo, inputs=inputs_embed, outputs=output)
75
+
76
+ inputs_w = gr.TextArea(label="Text to Analyze", placeholder="Copy your watermarked text here...")
77
+ with gr.Row():
78
+ mode = gr.Dropdown(
79
+ label="Detection Mode", choices=["Fast", "Precise"], value="Fast"
80
+ )
81
+ output_detect = gr.Textbox(label="Confidence (the likelihood of the text containing a watermark)")
82
+ detect_button = gr.Button("Detect")
83
 
84
+ def detect_watermark(inputs_w, mode, tau_word):
85
+ if mode == "Fast":
86
+ return watermark_extract(inputs_w)
87
+ else:
88
+ return precise_watermark_detect(inputs_w,tau_word)
89
 
90
+ detect_button.click(fn=detect_watermark, inputs=[inputs_w, mode, tau_word], outputs=output_detect)
91
 
92
  if __name__ == "__main__":
93
  gr.close_all()
94
  demo.title = "Watermarking Text Generated by Black-Box Language Models"
95
+ demo.launch(share = True, server_port=8898)
models/watermark_faster.py CHANGED
@@ -8,8 +8,8 @@ import hashlib
8
  from scipy.stats import norm
9
  import gensim
10
  import pdb
11
- # from transformers import BertForMaskedLM as WoBertForMaskedLM
12
- # from wobert import WoBertTokenizer
13
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
14
 
15
  from transformers import BertForMaskedLM, BertTokenizer, RobertaForSequenceClassification, RobertaTokenizer
@@ -21,8 +21,6 @@ import paddle
21
  from jieba import posseg
22
  paddle.enable_static()
23
  import re
24
- nltk.download('punkt')
25
- nltk.download('averaged_perceptron_tagger')
26
  def cut_sent(para):
27
  para = re.sub('([。!?\?])([^”’])', r'\1\n\2', para)
28
  para = re.sub('([。!?\?][”’])([^,。!?\?\n ])', r'\1\n\2', para)
@@ -70,6 +68,7 @@ class watermark_model:
70
  self.w2v_model = api.load("glove-wiki-gigaword-100")
71
  nltk.download('stopwords')
72
  self.stop_words = set(stopwords.words('english'))
 
73
 
74
  def cut(self,ori_text,text_len):
75
  if self.language == 'Chinese':
@@ -273,8 +272,7 @@ class watermark_model:
273
  return all_processed_tokens,new_index_space
274
 
275
 
276
- def filter_candidates(self, init_candidates_list, tokens, index_space, input_text):
277
-
278
  all_context_word_similarity_scores = self.context_word_sim(init_candidates_list, tokens, index_space, input_text)
279
 
280
  all_sentence_similarity_scores = self.sentence_sim(init_candidates_list, tokens, index_space, input_text)
@@ -287,7 +285,7 @@ class watermark_model:
287
  for idx, candidate in enumerate(init_candidates):
288
  global_word_similarity_score = self.global_word_sim(tokens[masked_token_index], candidate)
289
  word_similarity_score = self.lamda*context_word_similarity_scores[idx]+(1-self.lamda)*global_word_similarity_score
290
- if word_similarity_score >= self.tau_word and sentence_similarity_scores[idx] >= self.tau_sent:
291
  filtered_candidates.append((candidate, word_similarity_score))
292
 
293
  if len(filtered_candidates) >= 1:
@@ -320,7 +318,7 @@ class watermark_model:
320
 
321
  return best_candidates, new_index_space
322
 
323
- def watermark_embed(self,text):
324
  input_text = text
325
  # Tokenize the input text
326
  tokens = self.tokenizer.tokenize(input_text)
@@ -344,7 +342,7 @@ class watermark_model:
344
  init_candidates, new_index_space = self.candidates_gen(tokens,index_space,input_text, 8, 0)
345
  if len(new_index_space)==0:
346
  return text
347
- enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,input_text)
348
 
349
  enhanced_candidates, new_index_space = self.get_candidate_encodings(tokens, enhanced_candidates, new_index_space)
350
 
@@ -356,7 +354,7 @@ class watermark_model:
356
  watermarked_text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text)
357
  return watermarked_text
358
 
359
- def embed(self, ori_text):
360
  sents = self.sent_tokenize(ori_text)
361
  sents = [s for s in sents if s.strip()]
362
  num_sents = len(sents)
@@ -369,9 +367,9 @@ class watermark_model:
369
  sent_pair = sents[i]
370
  # keywords = jieba.analyse.extract_tags(sent_pair, topK=5, withWeight=False)
371
  if len(watermarked_text) == 0:
372
- watermarked_text = self.watermark_embed(sent_pair)
373
  else:
374
- watermarked_text = watermarked_text + self.watermark_embed(sent_pair)
375
  if len(self.get_encodings_fast(ori_text)) == 0:
376
  # print(ori_text)
377
  return ''
@@ -411,7 +409,7 @@ class watermark_model:
411
  is_watermark = z >= threshold
412
  return is_watermark, p_value, n, ones, z
413
 
414
- def get_encodings_precise(self, text):
415
  # pdb.set_trace()
416
  sents = self.sent_tokenize(text)
417
  sents = [s for s in sents if s.strip()]
@@ -441,7 +439,7 @@ class watermark_model:
441
  continue
442
 
443
  init_candidates, new_index_space = self.candidates_gen(tokens,index_space,sent_pair, 8, 0)
444
- enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,sent_pair)
445
 
446
  # pdb.set_trace()
447
  for j,idx in enumerate(new_index_space):
@@ -451,9 +449,9 @@ class watermark_model:
451
  return encodings
452
 
453
 
454
- def watermark_detector_precise(self,text,alpha=0.05):
455
  p = 0.5
456
- encodings = self.get_encodings_precise(text)
457
  n = len(encodings)
458
  ones = sum(encodings)
459
  if n == 0:
 
8
  from scipy.stats import norm
9
  import gensim
10
  import pdb
11
+ from transformers import BertForMaskedLM as WoBertForMaskedLM
12
+ from wobert import WoBertTokenizer
13
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
14
 
15
  from transformers import BertForMaskedLM, BertTokenizer, RobertaForSequenceClassification, RobertaTokenizer
 
21
  from jieba import posseg
22
  paddle.enable_static()
23
  import re
 
 
24
  def cut_sent(para):
25
  para = re.sub('([。!?\?])([^”’])', r'\1\n\2', para)
26
  para = re.sub('([。!?\?][”’])([^,。!?\?\n ])', r'\1\n\2', para)
 
68
  self.w2v_model = api.load("glove-wiki-gigaword-100")
69
  nltk.download('stopwords')
70
  self.stop_words = set(stopwords.words('english'))
71
+ self.nlp = spacy.load('en_core_web_sm')
72
 
73
  def cut(self,ori_text,text_len):
74
  if self.language == 'Chinese':
 
272
  return all_processed_tokens,new_index_space
273
 
274
 
275
+ def filter_candidates(self, init_candidates_list, tokens, index_space, input_text, tau_word):
 
276
  all_context_word_similarity_scores = self.context_word_sim(init_candidates_list, tokens, index_space, input_text)
277
 
278
  all_sentence_similarity_scores = self.sentence_sim(init_candidates_list, tokens, index_space, input_text)
 
285
  for idx, candidate in enumerate(init_candidates):
286
  global_word_similarity_score = self.global_word_sim(tokens[masked_token_index], candidate)
287
  word_similarity_score = self.lamda*context_word_similarity_scores[idx]+(1-self.lamda)*global_word_similarity_score
288
+ if word_similarity_score >= tau_word and sentence_similarity_scores[idx] >= self.tau_sent:
289
  filtered_candidates.append((candidate, word_similarity_score))
290
 
291
  if len(filtered_candidates) >= 1:
 
318
 
319
  return best_candidates, new_index_space
320
 
321
+ def watermark_embed(self,text,tau_word):
322
  input_text = text
323
  # Tokenize the input text
324
  tokens = self.tokenizer.tokenize(input_text)
 
342
  init_candidates, new_index_space = self.candidates_gen(tokens,index_space,input_text, 8, 0)
343
  if len(new_index_space)==0:
344
  return text
345
+ enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,input_text,tau_word)
346
 
347
  enhanced_candidates, new_index_space = self.get_candidate_encodings(tokens, enhanced_candidates, new_index_space)
348
 
 
354
  watermarked_text = re.sub(r'(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff,。?!、:])|(?<=[\u4e00-\u9fff,。?!、:])\s+(?=[\u4e00-\u9fff])', '', watermarked_text)
355
  return watermarked_text
356
 
357
+ def embed(self, ori_text, tau_word):
358
  sents = self.sent_tokenize(ori_text)
359
  sents = [s for s in sents if s.strip()]
360
  num_sents = len(sents)
 
367
  sent_pair = sents[i]
368
  # keywords = jieba.analyse.extract_tags(sent_pair, topK=5, withWeight=False)
369
  if len(watermarked_text) == 0:
370
+ watermarked_text = self.watermark_embed(sent_pair, tau_word)
371
  else:
372
+ watermarked_text = watermarked_text + self.watermark_embed(sent_pair, tau_word)
373
  if len(self.get_encodings_fast(ori_text)) == 0:
374
  # print(ori_text)
375
  return ''
 
409
  is_watermark = z >= threshold
410
  return is_watermark, p_value, n, ones, z
411
 
412
+ def get_encodings_precise(self, text, tau_word):
413
  # pdb.set_trace()
414
  sents = self.sent_tokenize(text)
415
  sents = [s for s in sents if s.strip()]
 
439
  continue
440
 
441
  init_candidates, new_index_space = self.candidates_gen(tokens,index_space,sent_pair, 8, 0)
442
+ enhanced_candidates, new_index_space = self.filter_candidates(init_candidates,tokens,new_index_space,sent_pair,tau_word)
443
 
444
  # pdb.set_trace()
445
  for j,idx in enumerate(new_index_space):
 
449
  return encodings
450
 
451
 
452
+ def watermark_detector_precise(self,text,tau_word,alpha=0.05):
453
  p = 0.5
454
+ encodings = self.get_encodings_precise(text,tau_word)
455
  n = len(encodings)
456
  ones = sum(encodings)
457
  if n == 0: