Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import os
|
|
5 |
import gradio as gr
|
6 |
import sentencepiece
|
7 |
|
8 |
-
|
9 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120'
|
10 |
model_id = "thesven/Llama3-8B-SFT-code_bagel-bnb-4bit"
|
11 |
tokenizer_path = "./"
|
@@ -14,11 +13,15 @@ DESCRIPTION = """
|
|
14 |
# thesven/Llama3-8B-SFT-code_bagel-bnb-4bit
|
15 |
"""
|
16 |
|
|
|
|
|
|
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
|
18 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=
|
19 |
|
20 |
-
def format_prompt(user_message, system_message="You are an expert developer in all programming languages.
|
21 |
-
prompt = f"
|
22 |
return prompt
|
23 |
|
24 |
@spaces.GPU
|
@@ -26,30 +29,30 @@ def predict(message, system_message, max_new_tokens=600, temperature=3.5, top_p=
|
|
26 |
formatted_prompt = format_prompt(message, system_message)
|
27 |
|
28 |
input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt')
|
29 |
-
input_ids = input_ids.to(
|
30 |
|
31 |
response_ids = model.generate(
|
32 |
input_ids,
|
33 |
max_length=max_new_tokens + input_ids.shape[1],
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
top_k=top_k,
|
37 |
no_repeat_ngram_size=9,
|
38 |
pad_token_id=tokenizer.eos_token_id,
|
39 |
do_sample=do_sample
|
40 |
)
|
41 |
|
42 |
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
43 |
-
truncate_str = "
|
44 |
if truncate_str and truncate_str in response:
|
45 |
response = response.split(truncate_str)[0]
|
46 |
|
47 |
-
return [("bot", response)]
|
48 |
-
|
49 |
with gr.Blocks() as demo:
|
50 |
gr.Markdown(DESCRIPTION)
|
51 |
with gr.Group():
|
52 |
-
system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are an expert developer in all programming languages.
|
53 |
|
54 |
with gr.Group():
|
55 |
chatbot = gr.Chatbot(label='thesven/Llama3-8B-SFT-code_bagel-bnb-4bit')
|
@@ -59,7 +62,7 @@ with gr.Blocks() as demo:
|
|
59 |
submit_button = gr.Button('Submit', variant='primary')
|
60 |
|
61 |
with gr.Accordion(label='Advanced options', open=False):
|
62 |
-
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum
|
63 |
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=0.1)
|
64 |
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
65 |
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40)
|
|
|
5 |
import gradio as gr
|
6 |
import sentencepiece
|
7 |
|
|
|
8 |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120'
|
9 |
model_id = "thesven/Llama3-8B-SFT-code_bagel-bnb-4bit"
|
10 |
tokenizer_path = "./"
|
|
|
13 |
# thesven/Llama3-8B-SFT-code_bagel-bnb-4bit
|
14 |
"""
|
15 |
|
16 |
+
# Check if CUDA is available and set device accordingly
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
print(f"Using device: {device}")
|
19 |
+
|
20 |
tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=device, torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32, trust_remote_code=True)
|
22 |
|
23 |
+
def format_prompt(user_message, system_message="You are an expert developer in all programming languages. Help me with my code. Answer any questions I have with code examples."):
|
24 |
+
prompt = f"assistant\n{system_message}\n\nuser\n{user_message}\nassistant\n"
|
25 |
return prompt
|
26 |
|
27 |
@spaces.GPU
|
|
|
29 |
formatted_prompt = format_prompt(message, system_message)
|
30 |
|
31 |
input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt')
|
32 |
+
input_ids = input_ids.to(device)
|
33 |
|
34 |
response_ids = model.generate(
|
35 |
input_ids,
|
36 |
max_length=max_new_tokens + input_ids.shape[1],
|
37 |
+
temperature=temperature,
|
38 |
+
top_p=top_p,
|
39 |
+
top_k=top_k,
|
40 |
no_repeat_ngram_size=9,
|
41 |
pad_token_id=tokenizer.eos_token_id,
|
42 |
do_sample=do_sample
|
43 |
)
|
44 |
|
45 |
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
46 |
+
truncate_str = ""
|
47 |
if truncate_str and truncate_str in response:
|
48 |
response = response.split(truncate_str)[0]
|
49 |
|
50 |
+
return [("bot", response)]
|
51 |
+
|
52 |
with gr.Blocks() as demo:
|
53 |
gr.Markdown(DESCRIPTION)
|
54 |
with gr.Group():
|
55 |
+
system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are an expert developer in all programming languages. Help me with my code. Answer any questions I have with code examples.")
|
56 |
|
57 |
with gr.Group():
|
58 |
chatbot = gr.Chatbot(label='thesven/Llama3-8B-SFT-code_bagel-bnb-4bit')
|
|
|
62 |
submit_button = gr.Button('Submit', variant='primary')
|
63 |
|
64 |
with gr.Accordion(label='Advanced options', open=False):
|
65 |
+
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum 55000, step=1, value=512)
|
66 |
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=0.1)
|
67 |
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
|
68 |
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40)
|