Snearec commited on
Commit
8d96f41
·
1 Parent(s): faac926

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -79
app.py CHANGED
@@ -1,83 +1,19 @@
 
 
1
  import gradio as gr
2
- import torch
3
- from sahi.prediction import ObjectPrediction
4
- from sahi.utils.cv import visualize_object_predictions, read_image
5
- from ultralyticsplus import YOLO
6
 
7
- # Images
8
- torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg')
9
- torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg')
10
- torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
11
 
12
- def yolov8_inference(
13
- image: gr.inputs.Image = None,
14
- model_path: gr.inputs.Dropdown = None,
15
- image_size: gr.inputs.Slider = 640,
16
- conf_threshold: gr.inputs.Slider = 0.25,
17
- iou_threshold: gr.inputs.Slider = 0.45,
18
- ):
19
- """
20
- YOLOv8 inference function
21
- Args:
22
- image: Input image
23
- model_path: Path to the model
24
- image_size: Image size
25
- conf_threshold: Confidence threshold
26
- iou_threshold: IOU threshold
27
- Returns:
28
- Rendered image
29
- """
30
- model = YOLO(model_path)
31
- model.conf = conf_threshold
32
- model.iou = iou_threshold
33
- results = model.predict(image, imgsz=image_size, return_outputs=True)
34
- object_prediction_list = []
35
- for _, image_results in enumerate(results):
36
- if len(image_results)!=0:
37
- image_predictions_in_xyxy_format = image_results['det']
38
- for pred in image_predictions_in_xyxy_format:
39
- x1, y1, x2, y2 = (
40
- int(pred[0]),
41
- int(pred[1]),
42
- int(pred[2]),
43
- int(pred[3]),
44
- )
45
- bbox = [x1, y1, x2, y2]
46
- score = pred[4]
47
- category_name = model.model.names[int(pred[5])]
48
- category_id = pred[5]
49
- object_prediction = ObjectPrediction(
50
- bbox=bbox,
51
- category_id=int(category_id),
52
- score=score,
53
- category_name=category_name,
54
- )
55
- object_prediction_list.append(object_prediction)
56
 
57
- image = read_image(image)
58
- output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
59
- return output_image['image']
60
-
61
-
62
- inputs = [
63
- gr.inputs.Image(type="filepath", label="Input Image"),
64
- gr.inputs.Dropdown(["kadirnar/yolov8n-v8.0", "kadirnar/yolov8m-v8.0", "kadirnar/yolov8l-v8.0", "ultralyticsplus/yolov8s", "Snearec/detectorMalezasYolo8"],
65
- default="Snearec/detectorMalezasYolo8", label="Model"),
66
- gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
67
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
68
- gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
69
- ]
70
-
71
- outputs = gr.outputs.Image(type="filepath", label="Output Image")
72
- title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
73
-
74
- demo_app = gr.Interface(
75
- fn=yolov8_inference,
76
- inputs=inputs,
77
- outputs=outputs,
78
- title=title,
79
- examples=examples,
80
- cache_examples=True,
81
- theme='huggingface',
82
- )
83
- demo_app.launch(debug=True, enable_queue=True)
 
1
+ from PIL import Image
2
+ from ultralytics import YOLO
3
  import gradio as gr
 
 
 
 
4
 
5
+ # Cargar un modelo YOLOv8n preentrenado
6
+ model = YOLO('best.pt')
 
 
7
 
8
+ def detect_objects(image: Image.Image):
9
+ # Realizar la inferencia
10
+ results = model(image)
11
+
12
+ # Obtener y mostrar los resultados
13
+ for r in results:
14
+ im_array = r.plot() # plot a BGR numpy array of predictions
15
+ im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
16
+ return im # retornar la imagen con los objetos detectados
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ # Crear la interfaz de Gradio
19
+ gr.Interface(fn=detect_objects, inputs="image", outputs="image").launch()