Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,156 +1,84 @@
|
|
1 |
-
import io
|
2 |
import gradio as gr
|
3 |
-
import matplotlib.pyplot as plt
|
4 |
-
import requests, validators
|
5 |
import torch
|
6 |
-
import
|
7 |
-
from
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
elif 'yolos' in model_name:
|
65 |
-
|
66 |
-
model = YolosForObjectDetection.from_pretrained(model_name)
|
67 |
-
|
68 |
-
if validators.url(url_input):
|
69 |
-
image = Image.open(requests.get(url_input, stream=True).raw)
|
70 |
-
|
71 |
-
elif image_input:
|
72 |
-
image = image_input
|
73 |
-
|
74 |
-
#Make prediction
|
75 |
-
processed_outputs = make_prediction(image, feature_extractor, model)
|
76 |
-
|
77 |
-
#Visualize prediction
|
78 |
-
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
79 |
-
|
80 |
-
return viz_img
|
81 |
|
82 |
-
def set_example_image(example: list) -> dict:
|
83 |
-
return gr.Image.update(value=example[0])
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
- [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50)
|
95 |
-
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
|
96 |
-
- [hustvl/yolos-small](https://huggingface.co/hustvl/yolos-small)
|
97 |
-
- [hustvl/yolos-tiny](https://huggingface.co/hustvl/yolos-tiny)
|
98 |
-
- [Snearec/detectorMalezasYolo8](https://huggingface.co/Snearec/detectorMalezasYolo8)
|
99 |
-
|
100 |
-
"""
|
101 |
-
|
102 |
-
models = ["facebook/detr-resnet-50","facebook/detr-resnet-101",'hustvl/yolos-small','hustvl/yolos-tiny','[Snearec/detectorMalezasYolo8]']
|
103 |
-
urls = ["https://c8.alamy.com/comp/J2AB4K/the-new-york-stock-exchange-on-the-wall-street-in-new-york-J2AB4K.jpg"]
|
104 |
-
|
105 |
-
twitter_link = """
|
106 |
-
[](https://twitter.com/nickmuchi)
|
107 |
-
"""
|
108 |
-
|
109 |
-
css = '''
|
110 |
-
h1#title {
|
111 |
-
text-align: center;
|
112 |
-
}
|
113 |
-
'''
|
114 |
-
demo = gr.Blocks(css=css)
|
115 |
-
|
116 |
-
with demo:
|
117 |
-
gr.Markdown(title)
|
118 |
-
gr.Markdown(description)
|
119 |
-
gr.Markdown(twitter_link)
|
120 |
-
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
|
121 |
-
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
|
122 |
-
|
123 |
-
with gr.Tabs():
|
124 |
-
with gr.TabItem('Image URL'):
|
125 |
-
with gr.Row():
|
126 |
-
url_input = gr.Textbox(lines=2,label='Enter valid image URL here..')
|
127 |
-
img_output_from_url = gr.Image(shape=(650,650))
|
128 |
-
|
129 |
-
with gr.Row():
|
130 |
-
example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls])
|
131 |
-
|
132 |
-
url_but = gr.Button('Detect')
|
133 |
-
|
134 |
-
with gr.TabItem('Image Upload'):
|
135 |
-
with gr.Row():
|
136 |
-
img_input = gr.Image(type='pil')
|
137 |
-
img_output_from_upload= gr.Image(shape=(650,650))
|
138 |
-
|
139 |
-
with gr.Row():
|
140 |
-
example_images = gr.Dataset(components=[img_input],
|
141 |
-
samples=[[path.as_posix()]
|
142 |
-
for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
|
143 |
-
|
144 |
-
img_but = gr.Button('Detect')
|
145 |
-
|
146 |
-
|
147 |
-
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
148 |
-
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
149 |
-
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
150 |
-
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
|
151 |
-
|
152 |
-
|
153 |
-
gr.Markdown("")
|
154 |
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
+
from sahi.prediction import ObjectPrediction
|
4 |
+
from sahi.utils.cv import visualize_object_predictions, read_image
|
5 |
+
from ultralyticsplus import YOLO
|
6 |
+
|
7 |
+
# Images
|
8 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/kadirnar/dethub/main/data/images/highway.jpg', 'highway.jpg')
|
9 |
+
torch.hub.download_url_to_file('https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg', 'highway1.jpg')
|
10 |
+
torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
11 |
+
|
12 |
+
def yolov8_inference(
|
13 |
+
image: gr.inputs.Image = None,
|
14 |
+
model_path: gr.inputs.Dropdown = None,
|
15 |
+
image_size: gr.inputs.Slider = 640,
|
16 |
+
conf_threshold: gr.inputs.Slider = 0.25,
|
17 |
+
iou_threshold: gr.inputs.Slider = 0.45,
|
18 |
+
):
|
19 |
+
"""
|
20 |
+
YOLOv8 inference function
|
21 |
+
Args:
|
22 |
+
image: Input image
|
23 |
+
model_path: Path to the model
|
24 |
+
image_size: Image size
|
25 |
+
conf_threshold: Confidence threshold
|
26 |
+
iou_threshold: IOU threshold
|
27 |
+
Returns:
|
28 |
+
Rendered image
|
29 |
+
"""
|
30 |
+
model = YOLO(model_path)
|
31 |
+
model.conf = conf_threshold
|
32 |
+
model.iou = iou_threshold
|
33 |
+
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
34 |
+
object_prediction_list = []
|
35 |
+
for _, image_results in enumerate(results):
|
36 |
+
if len(image_results)!=0:
|
37 |
+
image_predictions_in_xyxy_format = image_results['det']
|
38 |
+
for pred in image_predictions_in_xyxy_format:
|
39 |
+
x1, y1, x2, y2 = (
|
40 |
+
int(pred[0]),
|
41 |
+
int(pred[1]),
|
42 |
+
int(pred[2]),
|
43 |
+
int(pred[3]),
|
44 |
+
)
|
45 |
+
bbox = [x1, y1, x2, y2]
|
46 |
+
score = pred[4]
|
47 |
+
category_name = model.model.names[int(pred[5])]
|
48 |
+
category_id = pred[5]
|
49 |
+
object_prediction = ObjectPrediction(
|
50 |
+
bbox=bbox,
|
51 |
+
category_id=int(category_id),
|
52 |
+
score=score,
|
53 |
+
category_name=category_name,
|
54 |
+
)
|
55 |
+
object_prediction_list.append(object_prediction)
|
56 |
+
|
57 |
+
image = read_image(image)
|
58 |
+
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
59 |
+
return output_image['image']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
|
|
|
|
61 |
|
62 |
+
inputs = [
|
63 |
+
gr.inputs.Image(type="filepath", label="Input Image"),
|
64 |
+
gr.inputs.Dropdown(["kadirnar/yolov8n-v8.0", "kadirnar/yolov8m-v8.0", "kadirnar/yolov8l-v8.0", "kadirnar/yolov8x-v8.0", "kadirnar/yolov8x6-v8.0"],
|
65 |
+
default="kadirnar/yolov8m-v8.0", label="Model"),
|
66 |
+
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
|
67 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
68 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
|
69 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
72 |
+
title = "Ultralytics YOLOv8: State-of-the-Art YOLO Models"
|
73 |
+
|
74 |
+
examples = [['highway.jpg', 'kadirnar/yolov8m-v8.0', 640, 0.25, 0.45], ['highway1.jpg', 'kadirnar/yolov8l-v8.0', 640, 0.25, 0.45], ['small-vehicles1.jpeg', 'kadirnar/yolov8x-v8.0', 1280, 0.25, 0.45]]
|
75 |
+
demo_app = gr.Interface(
|
76 |
+
fn=yolov8_inference,
|
77 |
+
inputs=inputs,
|
78 |
+
outputs=outputs,
|
79 |
+
title=title,
|
80 |
+
examples=examples,
|
81 |
+
cache_examples=True,
|
82 |
+
theme='huggingface',
|
83 |
+
)
|
84 |
+
demo_app.launch(debug=True, enable_queue=True)
|