File size: 1,865 Bytes
5bd8d5b
fe42dd8
5bd8d5b
 
 
 
61d1727
5bd8d5b
 
61d1727
5bd8d5b
 
 
 
 
 
 
 
 
e4d42b3
61d1727
5bd8d5b
 
61d1727
 
5bd8d5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from typing import Optional

import gradio as gr
import numpy as np
import spaces
import supervision as sv
import torch
from PIL import Image
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.build_sam import build_sam2

MARKDOWN = """
# Segment Anything Model 2 🔥

Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable 
visual segmentation in both images and videos. The model extends its functionality to 
video by treating images as single-frame videos. Its design, a simple transformer 
architecture with streaming memory, enables real-time video processing.
"""

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
CHECKPOINT = "checkpoints/sam2_hiera_large.pt"
CONFIG = "sam2_hiera_l.yaml"

sam2_model = build_sam2(CONFIG, CHECKPOINT, device=DEVICE, apply_postprocessing=False)

@spaces.GPU
def process(image_input) -> Optional[Image.Image]:
    mask_generator = SAM2AutomaticMaskGenerator(sam2_model)
    image = np.array(image_input.convert("RGB"))
    sam_result = mask_generator.generate(image)
    detections = sv.Detections.from_sam(sam_result=sam_result)
    return MASK_ANNOTATOR.annotate(scene=image_input, detections=detections)


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)

    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(type='pil', label='Upload image')
            submit_button_component = gr.Button(value='Submit', variant='primary')
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image Output')

    submit_button_component.click(
        fn=process,
        inputs=[image_input_component],
        outputs=[image_output_component]
    )

demo.launch(debug=False, show_error=True, max_threads=1)