File size: 1,583 Bytes
9c79daa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from typing import Tuple, Dict, Any
from transformers import AutoModelForCausalLM, AutoProcessor
from unittest.mock import patch
from PIL import Image

from utils.imports import fixed_get_imports

CHECKPOINTS = [
    "microsoft/Florence-2-large-ft",
    "microsoft/Florence-2-large",
    "microsoft/Florence-2-base-ft",
    "microsoft/Florence-2-base",
]


def load_models(device: torch.device) -> Tuple[Dict[str, Any], Dict[str, Any]]:
    with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
        models = {}
        processors = {}
        for checkpoint in CHECKPOINTS:
            models[checkpoint] = AutoModelForCausalLM.from_pretrained(
                checkpoint, trust_remote_code=True).to(device)
            processors[checkpoint] = AutoProcessor.from_pretrained(
                checkpoint, trust_remote_code=True)
    return models, processors


def run_inference(
    model: Any,
    processor: Any,
    device: torch.device,
    image: Image,
    task: str,
    text: str = ""
) -> Tuple[str, Dict]:
    prompt = task + text
    inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        num_beams=3
    )
    generated_text = processor.batch_decode(
        generated_ids, skip_special_tokens=False)[0]
    response = processor.post_process_generation(
        generated_text, task=task, image_size=image.size)
    return generated_text, response