Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,583 Bytes
9c79daa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import torch
from typing import Tuple, Dict, Any
from transformers import AutoModelForCausalLM, AutoProcessor
from unittest.mock import patch
from PIL import Image
from utils.imports import fixed_get_imports
CHECKPOINTS = [
"microsoft/Florence-2-large-ft",
"microsoft/Florence-2-large",
"microsoft/Florence-2-base-ft",
"microsoft/Florence-2-base",
]
def load_models(device: torch.device) -> Tuple[Dict[str, Any], Dict[str, Any]]:
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
models = {}
processors = {}
for checkpoint in CHECKPOINTS:
models[checkpoint] = AutoModelForCausalLM.from_pretrained(
checkpoint, trust_remote_code=True).to(device)
processors[checkpoint] = AutoProcessor.from_pretrained(
checkpoint, trust_remote_code=True)
return models, processors
def run_inference(
model: Any,
processor: Any,
device: torch.device,
image: Image,
task: str,
text: str = ""
) -> Tuple[str, Dict]:
prompt = task + text
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=False)[0]
response = processor.post_process_generation(
generated_text, task=task, image_size=image.size)
return generated_text, response
|