File size: 5,142 Bytes
5b163f1
c34b7e0
7b4534e
 
b643479
c34b7e0
 
b643479
c34b7e0
 
 
 
69db725
c34b7e0
 
 
 
 
7b4534e
5b163f1
 
 
c34b7e0
7b4534e
b643479
 
 
c34b7e0
b643479
c34b7e0
 
7b4534e
b643479
 
 
 
 
 
 
 
 
c34b7e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b643479
5b163f1
 
 
 
c34b7e0
 
 
 
 
 
 
b643479
 
5b163f1
b643479
 
 
 
 
 
 
 
 
7b4534e
 
 
c34b7e0
7b4534e
 
5b163f1
 
 
 
 
 
7b4534e
5b163f1
 
 
7b4534e
 
5b163f1
 
 
7b4534e
5b163f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import uuid
from typing import Tuple, List

import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from transformers import pipeline, CLIPModel, CLIPProcessor

MARKDOWN = """
# Auto ⚑ ProPainter πŸ§‘β€πŸŽ¨
This is a demo for automatic removal of objects from videos using
[Segment Anything Model](https://github.com/facebookresearch/segment-anything),
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP), and 
[ProPainter](https://github.com/sczhou/ProPainter) combo.
"""

START_FRAME = 0
END_FRAME = 10
TOTAL = END_FRAME - START_FRAME
MINIMUM_AREA = 0.01

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SAM_GENERATOR = pipeline(
    task="mask-generation",
    model="facebook/sam-vit-large",
    device=DEVICE)
CLIP_MODEL = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(DEVICE)
CLIP_PROCESSOR = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")


def run_sam(frame: np.ndarray) -> sv.Detections:
    # convert from Numpy BGR to PIL RGB
    image = Image.fromarray(frame[:, :, ::-1])
    outputs = SAM_GENERATOR(image)
    mask = np.array(outputs['masks'])
    return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)


def run_clip(frame: np.ndarray, text: List[str]) -> np.ndarray:
    # convert from Numpy BGR to PIL RGB
    image = Image.fromarray(frame[:, :, ::-1])
    inputs = CLIP_PROCESSOR(text=text, images=image, return_tensors="pt").to(DEVICE)
    outputs = CLIP_MODEL(**inputs)
    probs = outputs.logits_per_image.softmax(dim=1)
    return probs.detach().cpu().numpy()


def gray_background(image: np.ndarray, mask: np.ndarray, gray_value=128):
    gray_color = np.array([gray_value, gray_value, gray_value], dtype=np.uint8)
    return np.where(mask[..., None], image, gray_color)


def filter_detections_by_area(frame: np.ndarray, detections: sv.Detections, minimum_area: float) -> sv.Detections:
    frame_width, frame_height = frame.shape[1], frame.shape[0]
    frame_area = frame_width * frame_height
    return detections[detections.area > minimum_area * frame_area]


def filter_detections_by_prompt(frame: np.ndarray, detections: sv.Detections, prompt: str, confidence: float) -> sv.Detections:
    text = [f"a picture of {prompt}", "a picture of background"]
    filtering_mask = []
    for xyxy, mask in zip(detections.xyxy, detections.mask):
        crop = gray_background(
            image=sv.crop_image(image=frame, xyxy=xyxy),
            mask=sv.crop_image(image=mask, xyxy=xyxy))
        probs = run_clip(frame=crop, text=text)
        filtering_mask.append(probs[0][0] > confidence)

    return detections[np.array(filtering_mask)]


def mask_frame(frame: np.ndarray, prompt: str, confidence: float) -> np.ndarray:
    detections = run_sam(frame)
    detections = filter_detections_by_area(
        frame=frame, detections=detections, minimum_area=MINIMUM_AREA)
    detections = filter_detections_by_prompt(
        frame=frame, detections=detections, prompt=prompt, confidence=confidence)
    # converting set of masks to a single mask
    mask = np.any(detections.mask, axis=0).astype(np.uint8) * 255
    # converting single channel mask to 3 channel mask
    return np.repeat(mask[:, :, np.newaxis], 3, axis=2)


def mask_video(source_video: str, prompt: str, confidence: float, name: str) -> str:
    video_info = sv.VideoInfo.from_video_path(source_video)
    frame_iterator = iter(sv.get_video_frames_generator(
        source_path=source_video, start=START_FRAME, end=END_FRAME))

    with sv.ImageSink(name, image_name_pattern="{:05d}.png") as image_sink:
        with sv.VideoSink(f"{name}.mp4", video_info=video_info) as video_sink:
            for _ in tqdm(range(TOTAL), desc="Masking frames"):
                frame = next(frame_iterator)
                annotated_frame = mask_frame(frame, prompt, confidence)
                video_sink.write_frame(annotated_frame)
                image_sink.save_image(annotated_frame)
    return f"{name}.mp4"


def process(
    source_video: str,
    prompt: str,
    confidence: float,
    progress=gr.Progress(track_tqdm=True)
) -> Tuple[str, str]:
    name = str(uuid.uuid4())
    masked_video = mask_video(source_video, prompt, confidence, name)
    return masked_video, masked_video


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            source_video_player = gr.Video(
                label="Source video", source="upload", format="mp4")
            prompt_text = gr.Textbox(
                label="Prompt", value="person")
            confidence_slider = gr.Slider(
                label="Confidence", minimum=0.5, maximum=1.0, step=0.05, value=0.6)
            submit_button = gr.Button("Submit")
        with gr.Column():
            masked_video_player = gr.Video(label="Masked video")
            painted_video_player = gr.Video(label="Painted video")

    submit_button.click(
        process,
        inputs=[source_video_player, prompt_text, confidence_slider],
        outputs=[masked_video_player, painted_video_player])

demo.queue().launch(debug=False, show_error=True)