import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, GPT2Config import torch # Load the OpenBuddy model and tokenizer model_name = "OpenBuddy/openbuddy-7b-v1.3-q4_0-enc" tokenizer = AutoTokenizer.from_pretrained(model_name) config = GPT2Config() # Use default configuration model = AutoModelForCausalLM.from_pretrained(model_name, config=config) # Create a function to generate responses from user inputs def generate_response(input_text): input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate(input_ids, max_length=100, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Define the Gradio interface iface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="OpenBuddy Chat", description="Enter your message to chat with OpenBuddy." ) # Launch the interface iface.launch()