Sk1306 commited on
Commit
33310e3
·
verified ·
1 Parent(s): 1dbb272

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -0
app.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
4
+ tokenizer = AutoTokenizer.from_pretrained("Sk1306/student_chat_toxicity_classifier_model")
5
+ model = AutoModelForSequenceClassification.from_pretrained("Sk1306/student_chat_toxicity_classifier_model")
6
+ def predict_toxicity(text):
7
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
8
+ outputs = model(**inputs)
9
+ logits = outputs.logits
10
+
11
+ # Apply softmax to get probabilities
12
+ probabilities = torch.nn.functional.softmax(logits, dim=-1)
13
+
14
+ # Get the predicted class (index 0 for non-toxic, index 1 for toxic)
15
+ predicted_class = torch.argmax(probabilities, dim=-1).item()
16
+
17
+ # Map the prediction to the label (0 = Non-toxic, 1 = Toxic)
18
+ if predicted_class == 0:
19
+ return "Non-toxic"
20
+ else:
21
+ return "Toxic"
22
+
23
+ interface = gr.Interface(
24
+ fn=predict_toxicity,
25
+ inputs="text", # Text input from the user
26
+ outputs="text", # Text output for the prediction
27
+ title="Student Chat Toxicity Classifier",
28
+ description="Enter a message",
29
+ theme="dark",
30
+ examples=[
31
+ "You can copy in exam to pass!",
32
+ "Study well.Hardwork pays off!",
33
+ "Take these drugs.It will boost your memory",
34
+ ],
35
+
36
+ )
37
+ interface.launch(inline=False)