import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer directly tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata") model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata") def chat_interface(user_input, assistant_input): # Concatenate the user and assistant inputs to simulate a chat conversation chat_history = f"{assistant_input} User: {user_input}" # Tokenize the chat history and generate the response inputs = tokenizer(chat_history, return_tensors="pt", max_length=256, truncation=True) outputs = model.generate(**inputs) response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] return response, chat_history # Define Gradio Chat Interface iface = gr.ChatInterface( chat_model=chat_interface, title="GPT-2 Chat Interface", inputs=["text", "text"], outputs=["text", "text"], ) # Launch Gradio Chat Interface iface.launch() # import torch # from transformers import AutoTokenizer, AutoModelForCausalLM # import gradio as gr # device = "cuda" if torch.cuda.is_available() else "cpu" # def create_prompt_with_chat_format(messages, bos="", eos="", add_bos=True): # formatted_text = "" # for message in messages: # if message["role"] == "system": # formatted_text += "<|system|>\n" + message["content"] + "\n" # elif message["role"] == "user": # formatted_text += "<|user|>\n" + message["content"] + "\n" # elif message["role"] == "assistant": # formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n" # else: # raise ValueError( # "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format( # message["role"] # ) # ) # formatted_text += "<|assistant|>\n" # formatted_text = bos + formatted_text if add_bos else formatted_text # return formatted_text # def inference(input_prompts, model, tokenizer): # input_prompts = [ # create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False) # for input_prompt in input_prompts # ] # encodings = tokenizer(input_prompts, padding=True, return_tensors="pt") # encodings = encodings.to(device) # with torch.inference_mode(): # outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250) # output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True) # input_prompts = [ # tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts # ] # output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)] # return output_texts # model_name = "ai4bharat/Airavata" # tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") # tokenizer.pad_token = tokenizer.eos_token # model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) # print(f"Loading model: {model_name}") # examples = [ # ["मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।"], # ["मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।"], # ] # def chat_interface(input_prompts): # outputs = inference(input_prompts, model, tokenizer) # return outputs # gr.Interface(fn=chat_interface, # inputs="text", # outputs="text", # examples=examples, # title="CAMAI ChatBot").launch()