File size: 6,312 Bytes
cdf298d
d9aa2f6
 
cdf298d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d58b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"


def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
    formatted_text = ""
    for message in messages:
        if message["role"] == "system":
            formatted_text += "<|system|>\n" + message["content"] + "\n"
        elif message["role"] == "user":
            formatted_text += "<|user|>\n" + message["content"] + "\n"
        elif message["role"] == "assistant":
            formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
        else:
            raise ValueError(
                "Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
                    message["role"]
                )
            )
    formatted_text += "<|assistant|>\n"
    formatted_text = bos + formatted_text if add_bos else formatted_text
    return formatted_text


def inference(input_prompts, model, tokenizer):
    input_prompts = [
        create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
        for input_prompt in input_prompts
    ]

    encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
    encodings = encodings.to(device)

    with torch.inference_mode():
        outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)

    output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

    input_prompts = [
        tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
    ]
    output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
    return output_texts


model_name = "ai4bharat/Airavata"

tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)

input_prompts = [
    "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।",
    "मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।",
]
outputs = inference(input_prompts, model, tokenizer)
print(outputs)




# import gradio as gr
# from transformers import AutoTokenizer, AutoModelForCausalLM

# tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
# model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")

# def generate_response(prompt):
#     input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=50)
#     output_ids = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2)
#     response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
#     return response

# iface = gr.Interface(
#     fn=generate_response,
#     inputs="text",
#     outputs="text",
#     live=True,
#     title="Airavata LLMs Chatbot",
#     description="Ask me anything, and I'll generate a response!",
#     theme="light",
# )

# iface.launch()










# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM

# device = "cuda" if torch.cuda.is_available() else "cpu"

# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
#     formatted_text = ""
#     for message in messages:
#         if message["role"] == "system":
#             formatted_text += "\n" + message["content"] + "\n"
#         elif message["role"] == "user":
#             formatted_text += "\n" + message["content"] + "\n"
#         elif message["role"] == "assistant":
#             formatted_text += "\n" + message["content"].strip() + eos + "\n"
#         else:
#             raise ValueError(
#                 "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
#                     message["role"]
#                 )
#             )
#     formatted_text += "\n"
#     formatted_text = bos + formatted_text if add_bos else formatted_text
#     return formatted_text

# def inference(input_prompts, model, tokenizer):
#     input_prompts = [
#         create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
#         for input_prompt in input_prompts
#     ]

#     encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
#     encodings = encodings.to(device)

#     with torch.no_grad():
#         outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)

#     output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

#     input_prompts = [
#         tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
#     ]
#     output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
#     return output_texts

# model_name = "ai4bharat/Airavata"
# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
# tokenizer.pad_token = tokenizer.eos_token
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
# examples = [
#     ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
#     ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
#     ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
# ]

# iface = gr.Chat(
#     model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer),
#     inputs=["text"],
#     outputs="text",
#     examples=examples,
#     title="Airavata Chatbot",
#     theme="light",  # Optional: Set a light theme
# )

# iface.launch()