File size: 2,787 Bytes
d9aa2f6
 
 
 
 
 
 
 
 
 
c4807ae
d9aa2f6
c4807ae
d9aa2f6
c4807ae
d9aa2f6
 
c4807ae
d9aa2f6
 
 
c4807ae
d9aa2f6
 
 
c4807ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9aa2f6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" if torch.cuda.is_available() else "cpu"

def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
    formatted_text = ""
    for message in messages:
        if message["role"] == "system":
            formatted_text += "\n" + message["content"] + "\n"
        elif message["role"] == "user":
            formatted_text += "\n" + message["content"] + "\n"
        elif message["role"] == "assistant":
            formatted_text += "\n" + message["content"].strip() + eos + "\n"
        else:
            raise ValueError(
                "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
                    message["role"]
                )
            )
    formatted_text += "\n"
    formatted_text = bos + formatted_text if add_bos else formatted_text
    return formatted_text

def inference(input_prompts, model, tokenizer):
    input_prompts = [
        create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
        for input_prompt in input_prompts
    ]

    encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
    encodings = encodings.to(device)

    with torch.no_grad():
        outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)

    output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

    input_prompts = [
        tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
    ]
    output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
    return output_texts

model_name = "ai4bharat/Airavata"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
examples = [
    ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
    ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
    ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
]

iface = gr.Chat(
    model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer),
    inputs=["text"],
    outputs="text",
    examples=examples,
    title="Airavata Chatbot",
    theme="light",  # Optional: Set a light theme
)

iface.launch()