File size: 3,659 Bytes
d9aa2f6
 
 
0d58b13
 
 
 
 
 
 
 
 
 
 
 
c4807ae
0d58b13
 
 
 
d9aa2f6
 
 
0d58b13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("ai4bharat/Airavata")
model = AutoModelForCausalLM.from_pretrained("ai4bharat/Airavata")

def generate_response(prompt):
    input_ids = tokenizer.encode(prompt, return_tensors="pt", max_length=50)
    output_ids = model.generate(input_ids, max_length=100, num_beams=5, no_repeat_ngram_size=2)
    response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return response

iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    live=True,
    title="Airavata LLMs Chatbot",
    description="Ask me anything, and I'll generate a response!",
    theme="light",
)

iface.launch()










# import gradio as gr
# import torch
# from transformers import AutoTokenizer, AutoModelForCausalLM

# device = "cuda" if torch.cuda.is_available() else "cpu"

# def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
#     formatted_text = ""
#     for message in messages:
#         if message["role"] == "system":
#             formatted_text += "\n" + message["content"] + "\n"
#         elif message["role"] == "user":
#             formatted_text += "\n" + message["content"] + "\n"
#         elif message["role"] == "assistant":
#             formatted_text += "\n" + message["content"].strip() + eos + "\n"
#         else:
#             raise ValueError(
#                 "Tulu chat template only supports 'system', 'user', and 'assistant' roles. Invalid role: {}.".format(
#                     message["role"]
#                 )
#             )
#     formatted_text += "\n"
#     formatted_text = bos + formatted_text if add_bos else formatted_text
#     return formatted_text

# def inference(input_prompts, model, tokenizer):
#     input_prompts = [
#         create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
#         for input_prompt in input_prompts
#     ]

#     encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
#     encodings = encodings.to(device)

#     with torch.no_grad():
#         outputs = model.generate(encodings.input_ids, do_sample=False, max_length=250)

#     output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)

#     input_prompts = [
#         tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
#     ]
#     output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
#     return output_texts

# model_name = "ai4bharat/Airavata"
# tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
# tokenizer.pad_token = tokenizer.eos_token
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
# examples = [
#     ["मुझे अपने करियर के बारे में सुझाव दो", "मैं कैसे अध्ययन कर सकता हूँ?"],
#     ["कृपया मुझे एक कहानी सुनाएं", "ताजमहल के बारे में कुछ बताएं"],
#     ["मेरा नाम क्या है?", "आपका पसंदीदा फिल्म कौन सी है?"],
# ]

# iface = gr.Chat(
#     model_fn=lambda input_prompts: inference(input_prompts, model, tokenizer),
#     inputs=["text"],
#     outputs="text",
#     examples=examples,
#     title="Airavata Chatbot",
#     theme="light",  # Optional: Set a light theme
# )

# iface.launch()