Spaces:
Sleeping
Sleeping
app.py
Browse files
app.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import random
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
-
from sklearn.preprocessing import LabelEncoder
|
6 |
-
|
7 |
-
# Initialize the model and tokenizer
|
8 |
-
model_name = "xlm-roberta-base"
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
11 |
-
|
12 |
-
# Define action space: [0 = Incorrect, 1 = Correct]
|
13 |
-
action_space = [0, 1]
|
14 |
-
|
15 |
-
# Define environment (simplified): classify text
|
16 |
-
text_data = [
|
17 |
-
("Water freezes at 0°C.", 1), # Correct
|
18 |
-
("The sun rises in the west.", 0), # Incorrect
|
19 |
-
("Dogs can fly in the sky.", 0), # Incorrect
|
20 |
-
("Birds lay eggs.", 1), # Correct
|
21 |
-
("The Earth is flat.", 0), # Incorrect
|
22 |
-
]
|
23 |
-
|
24 |
-
# Q-learning parameters
|
25 |
-
alpha = 0.1 # Learning rate
|
26 |
-
gamma = 0.9 # Discount factor
|
27 |
-
epsilon = 0.1 # Exploration rate
|
28 |
-
n_episodes = 1000 # Number of episodes for training
|
29 |
-
q_table = np.zeros((len(text_data), len(action_space))) # Q-table (state x action)
|
30 |
-
|
31 |
-
# Reward system (simplified)
|
32 |
-
def get_reward(text, predicted_label):
|
33 |
-
correct_label = next((label for t, label in text_data if t == text), None)
|
34 |
-
if predicted_label == correct_label:
|
35 |
-
return 1 # Reward for correct classification
|
36 |
-
return -1 # Penalty for incorrect classification
|
37 |
-
|
38 |
-
# Q-learning training loop
|
39 |
-
for episode in range(n_episodes):
|
40 |
-
state = random.choice(text_data) # Random initial text input
|
41 |
-
state_idx = text_data.index(state)
|
42 |
-
|
43 |
-
# Exploration vs Exploitation
|
44 |
-
if random.uniform(0, 1) < epsilon:
|
45 |
-
action = random.choice(action_space) # Exploration: random action
|
46 |
-
else:
|
47 |
-
action = np.argmax(q_table[state_idx]) # Exploitation: choose best action based on Q-table
|
48 |
-
|
49 |
-
# Make a prediction based on action
|
50 |
-
inputs = tokenizer(state[0], return_tensors="pt")
|
51 |
-
with torch.no_grad():
|
52 |
-
output = model(**inputs)
|
53 |
-
predicted_label = torch.argmax(output.logits, dim=1).item()
|
54 |
-
|
55 |
-
# Get reward from environment
|
56 |
-
reward = get_reward(state[0], predicted_label)
|
57 |
-
|
58 |
-
# Update Q-table using Q-learning update rule
|
59 |
-
next_state_idx = random.choice(range(len(text_data))) # Random next state (simplified)
|
60 |
-
best_next_action = np.argmax(q_table[next_state_idx])
|
61 |
-
q_table[state_idx, action] = (1 - alpha) * q_table[state_idx, action] + alpha * (reward + gamma * q_table[next_state_idx, best_next_action])
|
62 |
-
|
63 |
-
if episode % 100 == 0:
|
64 |
-
print(f"Episode {episode + 1}/{n_episodes}, Reward: {reward}")
|
65 |
-
|
66 |
-
# After training, the model should have learned which actions (labels) to take
|
67 |
-
print("Training complete.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|