SivaMallikarjun commited on
Commit
f0393c1
·
verified ·
1 Parent(s): d499032
Files changed (1) hide show
  1. app.py +0 -67
app.py DELETED
@@ -1,67 +0,0 @@
1
- import random
2
- import numpy as np
3
- import torch
4
- from transformers import AutoModelForSequenceClassification, AutoTokenizer
5
- from sklearn.preprocessing import LabelEncoder
6
-
7
- # Initialize the model and tokenizer
8
- model_name = "xlm-roberta-base"
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
10
- model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
11
-
12
- # Define action space: [0 = Incorrect, 1 = Correct]
13
- action_space = [0, 1]
14
-
15
- # Define environment (simplified): classify text
16
- text_data = [
17
- ("Water freezes at 0°C.", 1), # Correct
18
- ("The sun rises in the west.", 0), # Incorrect
19
- ("Dogs can fly in the sky.", 0), # Incorrect
20
- ("Birds lay eggs.", 1), # Correct
21
- ("The Earth is flat.", 0), # Incorrect
22
- ]
23
-
24
- # Q-learning parameters
25
- alpha = 0.1 # Learning rate
26
- gamma = 0.9 # Discount factor
27
- epsilon = 0.1 # Exploration rate
28
- n_episodes = 1000 # Number of episodes for training
29
- q_table = np.zeros((len(text_data), len(action_space))) # Q-table (state x action)
30
-
31
- # Reward system (simplified)
32
- def get_reward(text, predicted_label):
33
- correct_label = next((label for t, label in text_data if t == text), None)
34
- if predicted_label == correct_label:
35
- return 1 # Reward for correct classification
36
- return -1 # Penalty for incorrect classification
37
-
38
- # Q-learning training loop
39
- for episode in range(n_episodes):
40
- state = random.choice(text_data) # Random initial text input
41
- state_idx = text_data.index(state)
42
-
43
- # Exploration vs Exploitation
44
- if random.uniform(0, 1) < epsilon:
45
- action = random.choice(action_space) # Exploration: random action
46
- else:
47
- action = np.argmax(q_table[state_idx]) # Exploitation: choose best action based on Q-table
48
-
49
- # Make a prediction based on action
50
- inputs = tokenizer(state[0], return_tensors="pt")
51
- with torch.no_grad():
52
- output = model(**inputs)
53
- predicted_label = torch.argmax(output.logits, dim=1).item()
54
-
55
- # Get reward from environment
56
- reward = get_reward(state[0], predicted_label)
57
-
58
- # Update Q-table using Q-learning update rule
59
- next_state_idx = random.choice(range(len(text_data))) # Random next state (simplified)
60
- best_next_action = np.argmax(q_table[next_state_idx])
61
- q_table[state_idx, action] = (1 - alpha) * q_table[state_idx, action] + alpha * (reward + gamma * q_table[next_state_idx, best_next_action])
62
-
63
- if episode % 100 == 0:
64
- print(f"Episode {episode + 1}/{n_episodes}, Reward: {reward}")
65
-
66
- # After training, the model should have learned which actions (labels) to take
67
- print("Training complete.")