Spaces:
Sleeping
Sleeping
multi_language_rl_model
Browse files- multi_language_rl_model/README.md +0 -10
- multi_language_rl_model/app.py +0 -22
- multi_language_rl_model/checkpoints/checkpoint_episode_100/pytorch_model.bin +0 -0
- multi_language_rl_model/data/raw_data.csv +0 -6
- multi_language_rl_model/logs/Untitledtraining_log.txt +0 -4
- multi_language_rl_model/requirements.txt +0 -5
- multi_language_rl_model/train.py +0 -61
- multi_language_rl_model/utils/data_preprocessing.py +0 -0
multi_language_rl_model/README.md
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Multi-Language RL Model
|
3 |
-
emoji: 🌍
|
4 |
-
colorFrom: blue
|
5 |
-
colorTo: green
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: "3.50.2"
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multi_language_rl_model/app.py
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
-
import torch
|
4 |
-
|
5 |
-
model_path = "./models/fine_tuned_xlm_roberta_quantized"
|
6 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
8 |
-
|
9 |
-
def classify_text(text):
|
10 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
11 |
-
outputs = model(**inputs)
|
12 |
-
prediction = torch.argmax(outputs.logits, dim=1).item()
|
13 |
-
label = "Correct" if prediction == 1 else "Incorrect"
|
14 |
-
return label
|
15 |
-
|
16 |
-
iface = gr.Interface(fn=classify_text,
|
17 |
-
inputs="text",
|
18 |
-
outputs="text",
|
19 |
-
title="Multi-Language RL Text Classifier")
|
20 |
-
|
21 |
-
if __name__ == "__main__":
|
22 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multi_language_rl_model/checkpoints/checkpoint_episode_100/pytorch_model.bin
DELETED
File without changes
|
multi_language_rl_model/data/raw_data.csv
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
text,label
|
2 |
-
"Bonjour tout le monde",1
|
3 |
-
"Hola mundo",1
|
4 |
-
"Hello world",1
|
5 |
-
"Das ist falsch",0
|
6 |
-
"यह गलत है",0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multi_language_rl_model/logs/Untitledtraining_log.txt
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
Epoch 1/3 - Loss: 0.456 - Accuracy: 88%
|
2 |
-
Epoch 2/3 - Loss: 0.320 - Accuracy: 91%
|
3 |
-
Epoch 3/3 - Loss: 0.278 - Accuracy: 93%
|
4 |
-
Final Model saved to ./models/fine_tuned_xlm_roberta_quantized/
|
|
|
|
|
|
|
|
|
|
multi_language_rl_model/requirements.txt
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
transformers
|
2 |
-
torch
|
3 |
-
gradio
|
4 |
-
datasets
|
5 |
-
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
multi_language_rl_model/train.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
2 |
-
from datasets import load_dataset
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
-
|
6 |
-
# Load Dataset
|
7 |
-
dataset = load_dataset('csv', data_files={'train': './data/raw_data.csv'}, delimiter=",")
|
8 |
-
|
9 |
-
# Load Pretrained Tokenizer and Model
|
10 |
-
model_name = "xlm-roberta-base"
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
13 |
-
|
14 |
-
# Tokenization
|
15 |
-
def preprocess_function(examples):
|
16 |
-
return tokenizer(examples['text'], truncation=True, padding=True)
|
17 |
-
|
18 |
-
encoded_dataset = dataset.map(preprocess_function, batched=True)
|
19 |
-
|
20 |
-
# Training Arguments
|
21 |
-
training_args = TrainingArguments(
|
22 |
-
output_dir="./checkpoints",
|
23 |
-
num_train_epochs=3,
|
24 |
-
per_device_train_batch_size=8,
|
25 |
-
save_steps=100,
|
26 |
-
save_total_limit=1,
|
27 |
-
logging_dir="./logs",
|
28 |
-
logging_steps=10,
|
29 |
-
evaluation_strategy="no",
|
30 |
-
push_to_hub=False,
|
31 |
-
load_best_model_at_end=False
|
32 |
-
)
|
33 |
-
|
34 |
-
# Trainer Setup
|
35 |
-
trainer = Trainer(
|
36 |
-
model=model,
|
37 |
-
args=training_args,
|
38 |
-
train_dataset=encoded_dataset['train']
|
39 |
-
)
|
40 |
-
|
41 |
-
# Start Training
|
42 |
-
trainer.train()
|
43 |
-
|
44 |
-
# Save Final Fine-tuned Model
|
45 |
-
save_directory = "./models/fine_tuned_xlm_roberta"
|
46 |
-
os.makedirs(save_directory, exist_ok=True)
|
47 |
-
model.save_pretrained(save_directory)
|
48 |
-
tokenizer.save_pretrained(save_directory)
|
49 |
-
|
50 |
-
# Quantize Model (Make Lightweight)
|
51 |
-
def quantize_model(model_path):
|
52 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
53 |
-
model.to(torch.device('cpu'))
|
54 |
-
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
55 |
-
quantized_model_path = model_path + "_quantized"
|
56 |
-
os.makedirs(quantized_model_path, exist_ok=True)
|
57 |
-
model.save_pretrained(quantized_model_path)
|
58 |
-
tokenizer.save_pretrained(quantized_model_path)
|
59 |
-
print(f"Quantized model saved to {quantized_model_path}")
|
60 |
-
|
61 |
-
quantize_model(save_directory)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
multi_language_rl_model/utils/data_preprocessing.py
DELETED
File without changes
|