Spaces:
Build error
Build error
Create model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import fasttext
|
| 4 |
+
|
| 5 |
+
class SimpleMultilingualClassifier(nn.Module):
|
| 6 |
+
def __init__(self, embedding_files, num_classes, embedding_dim=100):
|
| 7 |
+
super().__init__()
|
| 8 |
+
self.embedding_files = embedding_files
|
| 9 |
+
self.embedding_dim = embedding_dim
|
| 10 |
+
self.linear = nn.Linear(embedding_dim, num_classes)
|
| 11 |
+
self.language_models = {}
|
| 12 |
+
for lang, path in embedding_files.items():
|
| 13 |
+
self.language_models[lang] = fasttext.load_model(path)
|
| 14 |
+
|
| 15 |
+
def get_embedding(self, text, lang):
|
| 16 |
+
if lang in self.language_models:
|
| 17 |
+
return torch.tensor(self.language_models[lang].get_sentence_vector(text))
|
| 18 |
+
else:
|
| 19 |
+
raise ValueError(f"Language '{lang}' not supported.")
|
| 20 |
+
|
| 21 |
+
def forward(self, text, lang):
|
| 22 |
+
embedding = self.get_embedding(text, lang)
|
| 23 |
+
return self.linear(embedding)
|
| 24 |
+
|
| 25 |
+
def predict(self, text, lang, class_labels):
|
| 26 |
+
self.eval()
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
output = self.forward(text, lang).unsqueeze(0) # Add batch dimension
|
| 29 |
+
probabilities = torch.softmax(output, dim=-1)
|
| 30 |
+
predicted_class_index = torch.argmax(probabilities, dim=-1).item()
|
| 31 |
+
return class_labels[predicted_class_index]
|
| 32 |
+
|
| 33 |
+
# Example usage (you'd need to define your classes and supported languages)
|
| 34 |
+
if __name__ == '__main__':
|
| 35 |
+
embedding_files = {
|
| 36 |
+
'en': 'fasttext_embeddings/cc.en.100.bin',
|
| 37 |
+
'fr': 'fasttext_embeddings/cc.fr.100.bin'
|
| 38 |
+
}
|
| 39 |
+
num_classes = 3 # Example number of classes
|
| 40 |
+
class_labels = ["positive", "negative", "neutral"]
|
| 41 |
+
model = SimpleMultilingualClassifier(embedding_files, num_classes)
|
| 42 |
+
|
| 43 |
+
# Dummy prediction
|
| 44 |
+
text_en = "This is a great movie."
|
| 45 |
+
lang_en = 'en'
|
| 46 |
+
prediction_en = model.predict(text_en, lang_en, class_labels)
|
| 47 |
+
print(f"English Prediction: {prediction_en}")
|
| 48 |
+
|
| 49 |
+
text_fr = "C'est un film incroyable."
|
| 50 |
+
lang_fr = 'fr'
|
| 51 |
+
prediction_fr = model.predict(text_fr, lang_fr, class_labels)
|
| 52 |
+
print(f"French Prediction: {prediction_fr}")
|