Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from model import SimpleMultilingualClassifier # Import your model | |
# --- Configuration --- | |
embedding_files = { | |
'en': 'fasttext_embeddings/cc.en.100.bin', | |
'fr': 'fasttext_embeddings/cc.fr.100.bin' | |
# Add more languages as needed | |
} | |
num_classes = 3 # Replace with the actual number of classes | |
class_labels = ["positive", "negative", "neutral"] # Replace with your actual class labels | |
# Load the model | |
try: | |
model = SimpleMultilingualClassifier(embedding_files, num_classes) | |
# In a real scenario, you would load trained weights here: | |
# model.load_state_dict(torch.load('path/to/your/trained_weights.pth')) | |
model.eval() | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
model = None | |
def classify_text(text, language): | |
if model: | |
try: | |
prediction = model.predict(text, language, class_labels) | |
return prediction | |
except ValueError as e: | |
return str(e) | |
else: | |
return "Model not loaded." | |
iface = gr.Interface( | |
fn=classify_text, | |
inputs=[ | |
gr.Textbox(label="Enter text"), | |
gr.Dropdown(choices=list(embedding_files.keys()), label="Language") | |
], | |
outputs=gr.Textbox(label="Prediction"), | |
title="Simple Multilingual Text Classifier", | |
description="A basic multilingual text classifier using FastText embeddings.", | |
) | |
iface.launch() |